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Chapter  1 

O v e r v i e w  of  e l ec tron ic  s t r u c t u r e  ca lcu la t ions  

1.1 Introduct ion 

O n e  of the most powerful tools for studying the properties of solids is the measurement 

and analysis of their optical properties. These provide much useful information about the 

electronic energy band structure through the optical response of the mobile electrons to an 

external oscillating electronic field. The aim of this thesis is to study the electronic band 

structure as well as optical response of solids. The optical response of the solid material is 

characterized by the complex refractive index (n = nl 7 in2), which may be expressed in 

terms of two optical constants, namely, the dielectric constant n 2 = c = c1 -- it2 and the 

optical absorption coefficient ~ -- ~c2/nlc (or the optical conductivity a -- we2/4~). An 

experimentalist measures some observable, such as reflectivity , transmission, absorption, 

ellipsometry or light scattering; from these experimental quantities we deduce the dielec- 

tric function e(w) or the optical conductivity or(w) to compare with our theoretical results. 

These quantities are frequency-dependent complex functions and are directly related to 

the energy band structure of solids. 

There is already an immense literature dedicated to light-solid state interactions, or 

in other words, the effect of the electromagnetic field on the electronic states of the solids, 

due to itsmajor role in understanding the physics and properties of the solid state. This 

literature is continuously growing and flourishing, due also to the paramount importance 

of solid state devices in the development of any conceivable area of technology. However, 

this literature is mainly written emphasizing a certain type of materials (metals, semi- 

conductors, ferroelectric materials, etc.) and also a certain type of optical experimental 
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methods on both compounds and alloys. But if we look at the theoretical studies, we 

hardly find much literature on dielectric response of random alloys. The object of this 

thesis is to develop a formulation to study optical response of compounds and disordered 

alloys. 

Throughout our study we shall be dealing with the direct transitions only. So there is 

no phonon involved in our calculations. The simplest theory of the response of a solid to 

an oscillating external electromagnetic field is provided by the Drude model. The basic 

assumption is that the optical conductivity and the dielectric constant can be determined 

by considering the motion of free electrons. The model is based on classical equations 

of motion of an electron in an optical electric field, and gives the simplest theory of 

the optical constants. This free electrons contributions are mostly found in the metallic 

systems. These systems have no band-gaps and for low photon energies the conductivity 

arises due to intraband transition between s.-p states, which are free electron like and lead 

to a Drude type of behaviour. As the photon energy increases and becomes comparable to 

the energy gap for semiconductor or insulator, a new conduction process, called interband 

transition, can occur. In this process the photon is absorbed, an excited electronic state 

is formed and a hole is left behind. The intraband transition occurs mostly between the 

occupied d and the conduction states. The d-states are localized and the electrons are 

also no more free. So the basic theory for the optical conductivity for localized states are 

not so simple as free electrons. 

Ordered alloys with translational symmetries in their potentials are relatively easier 

to study. Complexity arises when we encounter the description of disordered alloys. The 

optical properties change as we move from the domain of ordered to disordered alloys. The 

disorder in alloys may appear in various forms : topological, substitutional, positional and 

so on. In this work we shall be concerned only with the substitutional disorder. Such alloys 

have an underlying lattice but the sites are occupied by either of the constituent atoms 

randomly with varying degree of statistical correlations. As so specific arrangements of 

constituents can be assumed for the case of random alloys, we have to consider several 

realizations of the system and then carry out proper averaging over configurations to 

obtain meaningful physical quantities. 

Our plan is to develop a complete mathematical scheme which will be applicable to 
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both compounds and random binary alloys to study optical properties. In our development 

we shall emphasize the computational feasibility of the scheme. To improve the accuracy 

of the calculation and also to accelerate the computation, we shall carry out symmetry 

reduction in our formulation and finally write parallel programs compatible to a cluster 

machine. 

Next few sections of this chapter reviews the some of the basic methodologies required 

for electronic band structure calculations. We shall base our calculations on the tight- 

binding linear muffin-tin orbitals (TB-LMTO) method. We describe how the improved 

version of the LMTO method, namely order-N muffin-tin orbitals (NMTO) basis, provides 

a more consistent formalism, treats the interstitial region accurately, and goes beyond 

the linear approximation. We also review the recursion method by which elements of 

the Green function associated with the Hamiltonian are obtained by transforming the 

Hamiltonian in a tridiagonal form. Finally, we introduce the augmented space formalism 

(ASF) to deal with the configuration averaging of a random binary alloys. 

Chapter 2 is basically the continuation of the previous chapter for development of 

methodologies. In this chapter we shall describe the diagonal formalism of the augmented 

space recursion (ASR) within the framework of TB-LMTO method. We find that the main 

difficulty in the implementation of recursion on the augmented space is its enormous rank. 

So we present an efficient method which systematically reduces the rank of the augmented 

space and thereby helps to implement augmented space recursion for any real calculation. 

The method is based on the symmetry of the Hamiltonian in the augmented space and 

keeping recursion basis vectors in the irreducible subspace of the Hilbert space. 

Chapter 3 presents a reciprocal-space formulation of the ASR which uses the lat- 

tice translation symmetry in the full augmented space to produce configuration-averaged 

quantities, such as spectral functions and complex band structures. Since the real-space 

part is taken into account exactly and there is no truncation of this in the recursion, the 

results are more accurate than recursions in real-space. We shall also describe the Bril- 

louin zone integration procedure to obtain the configuration-averaged density of states. 

In order to carry out a calculation on a real alloy system, a serial program requires a very 

long time, We have, therefore, parallelized our codes, leading to faster computation. We 

apply the technique to Ni50Pts0 alloy in conjunction with the TB-LMTO basis. These de- 
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velopments in the theoretical basis is required for our future application to obtain optical 

conductivity in random systems. 

Chapter 4 is dedicated to the generalization of the recursion method of Haydock et 

al 1972 for the calculation of Green matrices (in angular momentum space). Earlier ap- 

proaches concentrated on the diagonal elements, since the focus was on spectral densities. 

However, calculations of configuration-averaged response functions or neutron scattering 

cross-sections require the entire Green matrices and self-energy matrices obtained from 

them. So we shall generalize the recursion to block recursion and block tridiagonalized 

the Hamiltonian. 

Chapter 5 is focused on deriving a modified expression of the optical conductivity 

applicable to any solids. In ordered solids electronic states are labelled by the band in- 

dex j and reciprocal vector k. Since we eventually want to apply to disordered systems, 

where the bands are not sharp and electronic states are labelled by energy E and angular 

momentum L, we recast the Kubo formula as a product between energy-frequency depen- 

dent transition matrix and the energy resolved joint density of states (JDOS). Our main 

motivation is to generalize it to disordered systems, where the traditional reciprocal-space 

formulation breaks down due to the failure of Block's theorem. We shall work within the 

TB-LMTO minimal basis set and apply the new formula to the three alkaline-earth per- 

ovskite titanates in their paraelectric phases. To improve the results in the higher region 

of frequency we have used the NMTO basis and applied this to ZnIn2Te4. 

Chapter 6 presents a formulation for the calculation of the configuration-averaged 

optical conductivity in random alloys. The formulation is based on the augmented space 

theorem introduced by Mookerjee 1973. We show that disorder scattering renormalizes the 

electron and hole propagators as well as the transition amplitude. The corrections to the 

transition amplitude have been shown to be related to the self-energy of the propagators 

and vertex corrections. We shall combine our formulation with the TB-LMTO technique 

to study the optical conductivities of two alloys Cu50Au50 and Ni50Pt50. 

Chapter 7 is an evaluation of our work. We shall describe our achievements, its 

limitations and try to prescribe how to overcome or minimize these limitations. We shall 

also give a brief description of our future plan of work, and finally concluding remarks. 
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1.2 Linear muffin-t in orbitals  m e t h o d  

Muffin-tin orbitals (MTOs) form a basis of localized augmented orbitals introduced by 

Andersen 1971 and subsequently extended into an entire methodology. The goal of the 

approach is to provide a satisfying interpretation of the electronic structure of materials 

in terms of a minimal basis of orbitals. Like local orbital methods, the electronic states 

are described in a small number of meaningful orbitals; however, unlike those approaches 

the minimal basis can be accurate because the MTOs are generated from the Kohn-Sham 

Hamiltonian itself. 

This section is devoted to the MTO approach, which sets the stage for the linearized 

LMTO extension that exhibits the real power of the approach. 

1.2.1 The muffin-tin potential and partial wave solutions 

The density functional theory (DFT), reduces the many-body Hamiltonian of the valence 

electron cloud in the presence of a 'frozen' array of ion-cores to an effective one-electron 

problem. The potential as seen by an electron within the LDA is : 

V(r) ---- ~ v ( r -  R) 
R 

where R are the positions of the ion-cores and r is the position of the electron. In 

the neighbourhood of an ion-core the potential seen by the electron in a solid is not very 

different from that in the atom whose ion-core we are focusing on. We shall define a radius 

sR around R within which we shall assume that the potential is spherically symmetric. 

These spheres will be called the mu/~n-tin spheres. In the interstitial, that is the rest 

of the space from which the muffin-tin spheres are carved out, the potential varies very 

slowly. We shall replace the potential in this region by a constant average. The resulting 

potential is called a toulOn-tin potential. An illustration comparing a full potential with 

a muffin-tin one, is shown in figure i.I. 

Before we attempt to solve the full problem of an electron in a solid, let us first examine 

the problem of an electron in a single muffin-tin potential. This potential is given by : 

v ( r -  R) = ~ v(rR) for rR ~_ SR rR = Ir-- RI 
[ -v0 for rR > SR 
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THE FULL POTENTIAL THE MUFFIN-TIN POTENTIAL 

Figure 1.1: Comparison between a full- and a muffin-tin potential. 

and the SchrSdinger-like Kohn-Sham equation for the single electron, within the DFT, is 

given by : 

[ -  2m h--~-2 V 2 + v ( r - R ) ]  r  = ~ r  

We may immediately solve the above equation in the region rR ~ 8R, in which the potential 

is spherically symmetric and 

r  R) = ~RL(r YL(rR) (1.1) 

Here L denotes the angular momentum labels (6, m), YL(P) are the spherical harmonic 

functions and rR are the angular variables associated with the unit vector (r - R)/rR. 

~RL(rR, g) are solutions of the radial equation : 

v(rR) + r~ ~ rR~RL(e, rR) = O. (1.2) 

This solution is regular at r = R and behaves like r~ as rR --* O. Outside the muffin-tin 

sphere the potential is a constant. Again the wave function factorizes as in equation (1.1). 

The solution of the radial equation with a constant v(rR) = --Vo 

[ d  2 ~?(~ + 1) ] 
+ - = 0.  

are the spherical Bessel and Neumann functions and ~2 = s _ Vo. Since r = R is not 

included in this region, both the solutions are allowed and the full solution in this region 
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is the linear combination : 

Am(e, n) jt(nrn) + Bin(e, n) nt(nrn) 

We now invoke the boundary condition that on the muffin-tin sphere both the wave 

function and its derivative are continuous. The potential function is given in terms of the 

scattering phase shift as : 

= - c o t  v m ( e ,  ~ )  

n~(srR) [D[nt(nrn)] -- D[~RL(e, rR)]] l 
(1.3) 

where D[f(r)] is the scaled logarithmic derivative of f(r).  It follows immediately from 

equations (1.2) and (1.3) that  the potential functions or the phase shifts are dependent 

on the muffin-tin potential. The partial wave solution in all space is then : 

~RL(e, rR) = ! N~L(e'~) ~RL(e'rR) if rR <_ SR 
(1.4) 

[ n~(~rR)- P~L(e,~) j~(~rR) if rR > SR 

N~L(e ) is a n o r m a l i z a t i o n  constant. 

1.2.2 Muffin-tin orbitals and tail cancellation 

The partial waves are not adequate as a basis for the following reason : we would like a 

basis to be such that its head contains all the information about the potential, while its 

tail contains information only about the constant potential outside the muffin-tin sphere. 

In addition, we would like the basis not to be a badly behaved function anywhere in space. 

A way of choosing such a basis is as follows : 

XRL(e, rR) = ne(~rR) if rR > SR 
(1.5) 

The equation (1.3) ensures that the head and the tails of the above function match 

continuously and differentiably at the muffin-tin boundary at sR. These functions are 
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Figure 1.2: Construction of muffin-tin orbitals. 

called Muffin-tin OrbitMs (MTO) and qualify as suitable basis for representation of the 

wave function in the solid. 

We can think about the construction of the muffin-tin orbital as follows : We start 

from the Neumann function ne(~rR) defined in all space. We now retain the part in its 

tail and replace the head by the function N~L(e ) ~RL(e, rR) + P~L(e,~) je(~rR) which 

joins smoothly and differentiably with the tail. This is illustrated in the figure 1.2. 

So far we have been discussing the partial waves and muffin-tin orbitals associated with 

a single muffin-tin potential. Let us now introduce the wave function solution of the solid 

muffin-tin potential of the type shown in figure 1.1. We shall expand this wave function 

as a linear combination of the muffin-tin orbitals associated with individual muffin-tin 

potentials centered at different sites {R} : 

ko(e,r) = ~ CRi(e) X n i ( e , r - R )  (1.6) 
R L 

In what follows we shall also use the expression for the tail of the Neumann function 

ne(e;rn) outside its personal sphere : 

ne(~rR) = - ~ S~L,R,L,(~ ) je,(~rR, ) (1.7) 
L' 

Here S~L,R, L, (g) are the canonical structure constants which depend upon the relative 

position of R ~ with respect to R and have nothing to do with the ion-core potentials that  
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Figure 1.3: Three MTOs centered at R, R' and R". The tails of the central MTO lie on the 

other spheres and its head lies in its personal sphere. The MTOs are shown schematically 

only by their envelope. The tail cancellation theorem also illustrated here. 

sit at those sites. 

Now, if we refer to figure 1.3, we note that any muffin-tin sphere (for example, personal 

sphere) can be written as : 

~ ( r R  __< 8R ) : xR- Head -}- E )~R'Tail (1.8) 
R'~R 

which is 

rR, E rR' + L S IRI jLr' rR']  ' 'CRL 
But ~ R L  ~RL}ZLCRL is the solution of wave equation inside any of the sphere and this 

implies 

E [P~L(~,~) '{RR'SLL,- S~,R,,LR(~)] CRL = O, for all R'L' (1.9) 
RL 

This set of coupled linear equations have a solutions CRL for those energies where : 

det IP~ ~) - S~ = 0. 

This is the K K R  Secu la r  Equa t i on .  
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1.2.3 Linearization of energy 

The KKR secular equation is an implicit equation for ~. We have no a priori idea how 

many roots we expect, nor whether all roots are physically permissible. The equation 

is not of the eigen problem type, so that we have no proof of the reality of the roots. 

Further, the implicit equation is computationally expensive and the full KKR is difficult 

to implement for solids with many atoms per unit cell. It is therefore desirable to bypass 

this energy dependence. Andersen and Jepsen 1984 devised a clever way of achieving just 

this. 

The first step toward linearizing the KKR is to examine the energy dependence of the 

structure matrix S~R, (~). This energy dependence is inessential if the sphere packing is 

close. The typical wavelength of the partial waves or the muffin-tin orbitals is of the order 

27r/~. If this is much larger than the distance between neighbouring muffin-tin spheres, 

then the structure matrix has a very weak energy dependence. In most of the work using 

LMTO methods ~ is taken to be 0, although non-zero and multiple t~ calculations are also 

available these days. 

The next step is to note that the energy dependent solution of the SchSdinger equation 

inside a muffin-tin sphere can be expanded as a Taylor series about some energy r in 

our range of interest : 

 RL( ,rR) = + + O --   RL)2) 

So the muffin-tin orbitals can be made continuous and differentiable everywhere and 

orthogonal to the wave functions of the core electrons. 

Because of the replacement of the energy s by a fixed energy S~RL in the radial wave 

function, the LMTO method is no longer exact for the muffin-tin potential but the error 

in the energy is shown to be only of fourth order in the difference Ski -- ~RL. The block 

wave is constructed by taking the Block sum of the energy-independent muffin-tin orbitals. 

A trial function is given by the linear combination of muffin-tin orbitals thus obtained. 

A use of the variational principle in conjunction with the energy-independent muffin-tin 

orbitals results in a secular equation which is linear in energy of the form : 

de t [EI  - H I  = 0 
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where 

In expanded notation : 

H = C + &1/2 S o&1/2  

A1/2 o A1/2 (1.10) HRL,R'L' -~ CRL (~RR'(~LL ' + ~'~RL SRL,R'L' "*R'L' 

Here the potential parameters, C and ~ are diagonal matrices in the angular momentum 

indices. One of the difficulties with the KKR method (or the linearized version of it), is 

that any attempt to develop a real-space technique for the solution of the secular equation 

is hampered by the fact that the structure matrix described above, called canonical in the 

literature, is long-ranged. To avoid this, we shall follow the idea given by Andersen et al 

1984. The method is basically a change of basis from the canonical MTOs to the so-called 

screened MTOs. In this technique one obtain a new representation of basis in which the 

structure matrix is short-ranged or tight-binding like. The screened potential parameters 

and the screened structure matrix are obtained from the unscreened ones with the help 

of transformation parameters described by Andersen 1975. 

1.3 B e y o n d  l inear  m e t h o d s  : N M T O  

Recent developments in MTO methods show how approximations that  were introduced 

during development of the LMTO approach can be overcome. The new NMTO approach 

(Andersen et al 1998, Andersen and Saha-Dasgupta 2000) provides a more consistent 

formalism, treats the interstitial region accurately, and goes beyond the linear approxi- 

mation. 

In the LMTO approach, energy-independent orbitals were generated using the ap- 

proximation of a fixed ~ in the envelop function that  describes the interstitial region. 

This breaks the relation of ~ and the eigenvalue that  causes non-linearities in the KKR 

method. However, it also is an approximation that  is justified only in close-packed solids. 

In contrast, the wave function inside the sphere is treated more accurately through lin- 

earization. The NMTO method treats the sphere and interstitial equally by working with 

MTO-type functions %OL(~n, r -- R) localized around site R and calculated at fixed ener- 

gies E n both inside the sphere and in the interstitial (assumed to have a flat muffin-tin 
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potential). The NMTO basis function is then defined to be a linear combination of N 

such functions evaluated at N energies, 

N 
x N M T O / s  r ~ (~n,r R') / - (N)  {~ r), (1.11) RL ~ , J = Y:~ Y:. ~L' -- --nR'L',RL~, 

n=O R'L' 

where L(n N) is the transformation matrix that  includes the idea of screening (mixing states 

on different sites) and a linear combination of states evaluated at N fixed energies. 

As it stands, the NMTO function is energy dependent and appears to be merely a way 

to expand the basis. However, Andersen and coworkers (Andersen et al 1998, Andersen 

and Saha-Dasgupta 2000) have shown a way of generating energy-independent functions 
x N M T O  [_~ FtL I l-) using a polynomial approximation so that  the Schrbdinger equation is solved 

exactly at the N chosen energies. The ideas are a generalization of the transformation, 

which were chosen to give the correct phase shifts at an arbitrary set of energies. In 

the present case, the transformation is more general, mixing states of different angular 

momenta on different sites. The result of the transformation is that  each eivenfunction is 

accurate to order (~ - ~0)(~ - ~1)""  (~ - EN) and the eigenvalue to order (~ - ~0)2(~ - 

2 

If the N fixed energies are spread over a part of ,the spectrum, then the electronic 

structure is accurately reproduced over that  (large) energy range. Using the NMTO we 

do not have to carry out the multi-panel LMTO calculations required to give accuracy 

over a large energy range and is essential for our optical response calculations. 

1 . 4  T h e  r e c u r s i o n  m e t h o d  

The recursion method introduced by Haydock et al 1972 expresses the Hamiltonian in a 

form which couples an atom to its first nearest-neighbour, then through them to its more 

distant neighbours and so on. It is real space method by which elements of the Green 

function associated with a Hamiltonian are obtained by transforming the Hamiltonian in 

a tridiagonal form. The method is as follows : 

Given a Hamiltonian matrix H, defined in some basis {1r e.g. a lattice represen- 

tation, shown in figure 1.4, we seek a new set of basis vectors (lu0>, lUl>, .... , lun>, lun+l>) 

in which the Hamiltonian assumes a tridiagonal form Q. To reiterate, the motivation for 
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tridiagonalizing the Hamiltonian is due to the computational advantages this technique 

bears for very large matrices as will become clear in a moment. 

We begin by selecting a starting vector [u0), normalized to unity. We shall see in a 

later chapter that the choice of [u0) plays an important role in determining what kind of 

information can be extracted from the tridiagonal matrix Q directly. To leap ahead, we 

state that  [Uo) projects out the subspace of interest. 

The diagonal matrix element between ]Uo} and H is defined as 

ao = (Uo[ H ]Uo) 

We construct a new orthogonal basis vector ]Ul) by projecting lu0) onto H and sub- 

tracting the diagonal contribution, 

/31[ul) = (H - O~o) [Uo) 

Normalization of [ul) yields 31, 

For n > 1, the procedure continues in general as 

3n+l [Un+l)= ( g - O L n ) [ ~ t n ) -  3n [un-1), 

where 

a,~ = (u,~] H lu,~) 

(1.12) 

tracting the contributions parallel to ]un) and [un-1), therefore, the vector ['an+l) has 

To illustrate the origin of equation (1.12), we rewrite it as 

Hlun) = 3n+llun+l) + anlun) + 3nlUn-1) 

The product H[un) is a linear combination of only [Un+l), lUn) and [Un-1). 

(1.13) 

By sub- 
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Figure 1.4: Transformation to the chain. 

been constructed orthogonally to the former two, and furthermore to all previous vectors 

tu01, I  -iI. 
This construction is reminiscent of the Gram-Schmidt orthogonalization procedure, 

but, while in Gram-Schmidt any new vector has to be orthonormalized with respect to 

all previous vectors, in the case of the recursion basis any new vector needs to be orthog- 

onalized only against the two previous ones. All other scalar products are automatically 

zero. The three-term recurrence relation equation (1.12) produces a new basis {Jun}} in 

which the matrix has only diagonal elements {c~n} and symmetrical side diagonals {/~n}. 

The side diagonals will always be symmetrical if the matrix H is Hermitian, as is the case 

for all Hamiltonians. 

The transformation to a tridiagonal matrix can be graphically represented as the 

transformation of a d-dimensional lattice into a one-dimensional semi-infinite chain model. 

The basis states {]unl} and the coupling between sites is provided by {~n}, see figure 1.4. 
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In the lattice basis {1r of the Hamiltonian, each vector [un} is defined by its components 

{u~} on the lattice sites, 

i .e. I"n) I -n )  = = Lr 
i i 

L 

(1.14) 
i 
r~ 

If [u0) is chosen so that  its representation consists only of a single non-zero component 

located on a single site, i.e. u0 = r the vectors {lun)} form "shells" around the starting 

site, intuitively representing the "interaction" of increasingly distant environments with 

the state of projection. 

1.4.1 Density of states 

In conjunction with the SchrSdinger equation a physical system is completely described by 

its Hamiltonian operator, H. For the present purpose it is useful to define an equivalent 

operator, the Resolvent of the Hamiltonian, called Green function : 

G ( z ) - ( z - H )  -1 

Let {lCn) } be a complete set of eigenstates in Dirac notation with eigenvalues {.'~n} of H. 

We can then rewrite it in spectral representation, 

G(z) = ~ ICn)(r (1.15) 
n Z - -  / ~ n  

The resolvent possesses simple poles along real axis at each eigenvalue An. In an infinitely 

large system, the eigenvalues become dense, forming a band. The resolvent will then 

exhibit a branch cut for the width of the band. These observations indicate a relation to 

the density of states of the system : For a discrete spectrum, the density of states consists 

of discrete 5-functions at the location of the poles of the resolvent; for a continuous 

spectrum the 5-spikes fuse into a smooth function. A mathematically rigorous relation 

can be established by a limiting procedure approaching the singularities of the resolvent 
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from the above and below the real axis. Noting that 

lira 1 _ p l  
~-~0 z +i----; z ~:i~a(z)'  (1.16) 

we discover from equation (1.15) that the imaginary part of the resolvent becomes a 

sum of a-functions, using the limiting procedure of equation (1.16), 

] T -  Im G(z • ~c) = ~ ~(z - ~ )  --- n(z) (1.17) 
T" n 

The expression on the right-hand-side is the (global) density of states n(z). 

1.4.2 Projected or local density of states 

A quantity derived from the global density of states, equation (1.17) is the projected or 

local density of states (LDOS). The LDOS is weighted by the projection of the eigenstates 

{lea}} onto some state lu}, hence the name:  

nl~)(z) ~ ~ I(r .Xn) (1.18) 
n 

The projected density of states thus defined incorporates both local information by means 

of the overlaps with lul as well as global information through the distribution of eigen- 

states. It is unique quantity and suited for studying the interplay of the specifics of a 

certain state lul with the rest of the system at large. It can be used to measure the 

system's response to a disturbance brought on by the presence of the state lul. In a gen- 

eralized sense, if the states are substituted for operators ("operator recursion") (Annett 

et al 1994), the resulting quantity is a projected density of transitions which has been 

employed to tackle many-body quantum problems, such as a Heisenberg spin chain. The 

transitions induced therein by the removal of an electron can be calculated by projecting 

onto annihilation operator (Haydock 2000). 

The emphasis on the projected density of states stems from a neat relationship to the 

tridiagonal matrix Q. In the previous Section, we have shown how the global resolvent is 

related to the global density of states. If we consider a projected resolvent, 

Gl~)(z) ~ (u]G(z)lu)= (u l (z -  H)-llu), (1.19) 
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then by equations (1.17) and (1.18) the projected density of states emerges simply as 

1 
nl~,)(z ) = ~=- Imlim (ul(z • ie - H)-*lu> 

7r c---*O 
(1.20) 

If now the state lu) is chosen to be the starting state [Uo) of the recursion basis and 

we revert to matrix notation, then by straightforward linear algebra, the matrix element 

(Uol (z - H)-l lu0) equals the top left matrix element of the inverse of (z - Q), since 

luo), lul} . . ,  lUn} form the transformation matrix to Q, 

(Uol ( z -  H) -~ luo> = (eol ( z -  leo> (1.21) 

where (e01 = (1, 0, 0 , . . . )  the unit vectors in the Q basis. The top left element of an 

inverse matrix is easily obtained with the help of an expansion in cofactors. The result in 

a continued fraction expansion (Haydock 1980), 

<e01 ( E -  Q)-I leo> = 
E m oL 0 _ 

E -  oL 1 D 

E - o l  2 - 

E - c~3 - - -  

where the coefficients {an} and {3n} are the ones appearing in the tridiagonal matrix Q. 

1.4.3 T e r m i n a t i n g  S c h e m e s  

If the system is infinitely large, the continued fraction does not terminate at any finite step. 

But in any practical calculation we can go only up to a finite number of steps, depending 

on our computational facility. So the continued fraction approach is meaningful only 

if we can estimate what its asymptotic part would be from a set of initial coefficients 

{C~n, ~n} n ---- 0,..., N. Once we can do this, there are several ways of appending a 

terminator to the continued fraction expansion of the diagonal element of the resoivent 

to yield the density of states. For applying the termination scheme to approximate the 

tail of the continued fraction, we have to ensure that the approximate resolvent (which 

replaces G) should be such that the corresponding approximate Hamiltonian should have 
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a similar energy spectrum, as the original Hamiltonian H. In other words, the resulting 

approximate density of states should preserve the singularities (singularities at the band 

edges and Van-Hove singularities) of the density of states of the system one is examining. 

In case the coefficients converge after a certain number of steps, i.e. if Icon - c~ I _< c, 

I#n - #1 <-- e for n _> N, we may replace {c~n, #n} by {c~, #} for all n _> N. In that  case we 

can sum the remainder of the infinite continued fraction analytically as : 

F(E) = 

E - a~ - 
E -  s - ... 

is replaced by 

we can solve for 

F(E) = 
#2 

#2 
E-c~ 

E-ol 

1 o)2 _4 2) /122/ r ( E )  : 

which gives a continuous spectrum in the range c~ - 2# >_ E _> ~ + 2#. The terminator 

shown in equation (1.22) is called square root terminator. 

In more complex systems involving a number of isolated bands (for example semi- 

conductor and transition metal compounds), it is found that  the {c~, #n} are not at all 

rapidly convergent, as they now incorporate the detailed information of internal band 

edges and singularities. But we need to make a reasonable choice of {c~, #} to determine 

proper bandwidth and edges given by equation (1.22). It has been found that  if the 

bandwidth chosen is too small, then the LDOS develops spurious peaks at the band edges, 

weight may be lost from the band by delta functions splitting off from the band edges. 

These delta functions have an initially zero weight which increases with their distance 

from the band. On the other hand, if a bandwidth is chosen which is too large, tails with 

negligible weight are pulled from the LDOS out the edges. But a more important effect 

is the emphasis of all the features in the LDOS - the LDOS tends to a spectrum of delta 

functions as the bandwidth tends to infinity. 

Beer and Pettifor 1982 suggest a sensible criterion : given a finite number of coeffi- 

cients, we must choose {c~, #} in such a way so as to give, for this set of coefficients, the 
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minimum bandwidth consistent with no loss of spectral weight from the band. Let us call 

these values {ac,/3c}. This criterion is easily translated into mathematical terms. The 

delta function that  would carry weight out the band must then be situated exactly at the 

band edges. We thus demand that  the continued fraction diverge simultaneously at both 

the top and the bot tom of the band. 

At the band edges : F(a  4-2/3) = -+-/3, therefore, substituting E = c~ :t:/3 in the 

continued fraction we obtain 

G(o~ + 29)= 
1 

• - ~(~o - ~) - 

/312/4 
1 +;3- ~(~1- ~) -  /3~/4 

�9 .. ~ / 2  

For a given c~, the (N + 1) eigenvalues of the finite tridiagonal matrix 

� 8 9  ~ )  
1 �89 ~(~i-~) 

o �89 
"~ 

~ ~ ~ " ~ 0 

�9 ~ �9 ~ 
�9 �9 ~ 

�9 ~ �9 

"~149 " �9 �9176149 0 

0 (c~ a) �9 . .  ~ / 3 ~  - 

are values at which the Green function diverges. The maximum and minimum of 

this set of eigenvalues are those values of/3 which carry weight out of the band. Thus 

our choice of c~ is that value for which the maximum eigenvalue is the largest and the 

minimum the smallest�9 Since the terminator only involves/3 2 we must have 

~c = sup /3max(Olc)= inf I/3min(Olc)l. 

With this choice the terminator F(E) has all the Herglotz properties required�9 

1.5 R a n d o m  alloys : Configurat ion averaging 

The concept of configuration averaging is central to the study of disordered systems�9 The 

potentials which describe a disordered solid are characterized by random parameters�9 A 



Chapter 1. Optical properties of compounds and disordered alloys 20 

particular realization of these parameters, either in a given sample or at an instant is what 

we call a configuration of the system. The reason why one needs to introduce this idea 

for disordered system is as follows: with introduction of disorder, we face the problem 

of lack of sufficient information about the sample. When an experimentalist looks at a 

disordered sample with a view of studying its properties, he can interpret his results at 

most statistically. He is ignorant of microscopic configurations of random parameters of 

the system. For example, in a random binary alloy, the configuration of individual atoms 

on the lattice sites is different for different samples, and an experimentalist at the outset 

has no knowledge of the particular configuration of the sample. Evidently, every different 

sample of the random alloy will give experimental information having different micro- 

structure according to the configuration it has. The experimentalist, on the other hand, 

is primarily interested in the overall statistical trends of his results which he interprets as 

the physical properties of the random alloy. The mass of sample dependent information 

about the detailed structure is of no use to him. The theorist, too, can generate from his 

model a myriad of results depending on the particular random configuration he chooses for 

his random parameters. This again is of little use to physics. One, therefore, has to evolve 

a statistical description of the system and the most basic of these descriptions is the aver- 

aging over all possible configurations. The correct approach for a theoretician here should 

be to take his cue from experiment. When an experimentalist speaks of averaged prop- 

erties, he implies averaged physically measurable quantities : conductivity, susceptibility, 

electronic density of states etc. It is these quantities that one should average rather than 

averaging the Hamiltonian or the wave function. For a particular macroscopic system, the 

averaging over configurations is really done with the idea of spatial ergodicity. We assume 

that since the system is macroscopically large, we can partition it into subsystems, each 

of which resembles a configuration of the system. A global property which averages over 

the subsystem is then the same as average over all configurations. This assumption must 

hold in case of configuration averaging. In the next subsections we discuss a few methods 

of configuration averaging, their success and limitations. 
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1.6 The augmented space formalism (ASF) 

The augmented space formalism introduced by Mookerjee 1973 is a conceptually elegant 

and exact method of configuration averaging. This formalism maps a disordered Hamilto- 

nian described in Hilbert space 7-I onto an ordered Hamiltonian in a much enlarged Hilbert 

space whose Green function matrix elements correspond to appropriate configurational 

average of the Green function of the original disordered system. The ordered Hamiltonian 

is said to be in augmented space which is described as the direct product of the Hilbert 

space spanned by the original Hamiltonian with the configuration space which spans all 

possible configurations of the systems. 

The probability density of a random variable nR for a bimodal distribution has the 

following form : 

p(nR) = X 5(n.R -- 1) + y 5(nR) (1.23) 

It should have the following properties : 

p(nR) >_ 0 

f_~ p(nR) dnR = 1 < oe 
O0 

f_~ n'~ p(nR) dnR < c~ 
O0 

m >_ 1 (1.24) 

since the probability densities are positive definite functions, they are related to the 

spectral densities of a positive definite operator G(nR). That means, the probability den- 

sity p(nR) is similar to the density of states of the Hamiltonian. In recursion method, one 

transforms the Hamiltonian into a tridiagonal one and expresses the density of states as 

the imaginary part of a continued fraction containing the tridiagonal elements. Inversely, 

if one can find a convergent continued fraction expansion of the probability density, then 

the tridiagonal matrix formed out of the continued fraction co-efficients is a representa- 

tion of the operator MR. If nR has a binary distribution, taking the values 1 and 0 with 

probabilities x and y -- 1- x, then one can write the right hand side of the equation (1.23) 

in a continued fraction expansion as : 

-- - (j----_ 



Chapter 1. Optical properties of compounds and disordered alloys 22 

lIm( 1 / 
7(  n R  - -  X 

nR - -  y 

1Im<11 ((nR + i5)I - MR) -1 I1> 
7r 

(1.25) 

where 

MR= V~ Y 

Since the distribution is bimodal, the rank of the matrix MR is 2. The eigenvalues 

1,0 of the matrix MR correspond to the observed values of nn and the eigenvectors fIR), 

10R) are the state vectors of the variable. These two state vectors span a configuration 

space CR of rank 2. The tridiagonal representation of MR is in a basis such that the basis 

vectors can be expressed in terms of the eigenvectors as : 

ITs) = V~IIR>+v~IOR) 

1 IR) = v~llR> - v~loR> 

In these new basis the operator MR is : 

nR --+ MR = xP~ + YP~n + V/~ (Tn TI+ T~*) (1.26) 

where the projection operators 7~TR = [TR}(TR I and 7~$R = I SR>(~R l, and the transfer 

operator ~ = ] TR)(~R [are in the configuration space CR spanned by the basis ] T R), 

I SR>. 

The full configuration space (I) = rl~ CR is then spanned by vectors of the form 

I T/lit ...). These configurations may be labeled by the sequence of sites {C} at which 

we have a I. For example, for the state j~st quoted {C} = 1{3, 5,...}). This sequence 

is called the cardinality sequence. If we define the configuration ] IT ... T ...) as the 

reference configuration, then the cardinality sequence of the reference configuration is the 

null sequence {0}. 



Chapter 1. Overview of electronic structure calculation 23 

1.6.1 The augmented space theorem 

The average of a well-behaved function f(nR) of the random variable nR is expressed as : 

/2 << f(nR) >> ---- f(nR) p(nR) dnR 
o o  

- l I m f ~  f(nR)(TR I(nRI-- MR)-ll  TR) dnR (1.27) 
71" J - c ~  

Now, as the eigenvectors {I A) } of the operator MR form a complete set, we may write : 

1 F << f(nR) > = ----Im ~ ~ f(nR)<TR IA)(AI(nnI- MR)-I]x')<A'I TR) dnR 
A=O,I X'----~, 1 oo 

(1.28) 

But (nRI -- MR) -1 is diagonal in the eigenbasis of MR and is equal to 1/(nR -- A) (~, ,  

SO that 

F << f(nR) > = ~ f(nR)<TR IX)5(nR- X)<XI TR) dnR 
A=0,1 c~ 

(1.29) 

The final equation (1.29) is the central equation of the augmented space theorem. Here 

is an operator built out of f(nR) by simply replacing the variable nR by the associated 

operator MR. The above expression shows that the average is obtained by taking the 

matrix element of this operator between the reference state I TR}. 

Let us generalize the above theorem for functions of many independent random vari- 

ables. Suppose we have a set {nR} of discrete independent random variables and f ({nR}) 

are some function of these random variables. So the joint probability distribution is : 

P(nl , . . . ,nR , . . . )  = p(nl) . . .p(nR). . .  

and the generalization of the above theorem to averages of functions of the set of random 

variables is given by : 

<< f({nR}) >>---- (TR If({MR})] TR) (1.30) 
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N 

where the operators MR in the full configuration space r are built up from the operators 

MR as : 

MR = I|174 |174174 

This is the augmented space theorem (Mookerjee 1973). 

If we wish to carry out the configuration averaging of, say, the Green function element 

GRR(Z) = <RI (z I -  H({nR,}))-ilRI 

The theorem leads to : 

<< CRR(z) >> = <R | 01(zi -  Y({MR,}))-lIR | ~> (1.31) 

where 

Y= Z:~R| ~R+ Z: Z: VRR'TRR' | f 
R R R'  

The power of the theorem now becomes apparent. The average is seen to be a par- 

ticular matrix element of the Green function of an augmented Hamiltonian. This is con- 

structed out of the original random Hamiltonian by replacing the random variables by the 

corresponding configuration space operators built out of their probability distributions. 

This augmented Hamiltonian is an operator in the augmented space �9 = 7-I | if) where ?/ 

is the space spanned by the tight-binding basis and if) the full configuration space. The 

expression in equation (1.31) is exact, and approximations may now be introduced in the 

calculation of the matrix element. 
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The A u g m e n t e d  space recursion 

2.1 Augmented space recursion (ASR) 

F r o m  the discussion of the previous chapter it has been established that  for a disor- 

dered system the augmented space theorem maps a disordered Hamiltonian described in 

a Hilbert space onto an ordered Hamiltonian in a space augmented by the configuration 

space of the random variables of the disordered Hamiltonian. The configuration average 

of the Green function reduces to the evaluation of a particular matrix element of the 

resolvent of the ordered augmented Hamiltonian in this augmented space. Hence, if one 

performs a recursion in the augmented space, one can obtain the matrix element neces- 

sary to calculate the configuration average of a Green function directly. The advantage 

of the method is that  it does not involve a single site approximation or the solution of 

any self-consistent equation (which is a prerequisite for the CPA or its generalizations). 

Furthermore, one can treat both diagonal and off-diagonal disorder on an equal footing. 

We now briefly describe the diagonal formulation of the ASR within the framework of 

TB-LMTO formalism. 

2.1.1 The TB-LMTO Hamiltonian for random binary alloys 

The starting point of the augmented space recursion is the most localized, sparse, tight- 

binding Hamiltonian, derived systematically from the LMTO-ASA theory and generalized 

~ of this chapter has been published : K K Saha, T Saha-Dasgupta, A Mookerjee and I Dasgupta, 
J. Phys.: Condens. Matter 16 1409 (2004). 
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to substitutionally disordered random binary alloys : 

H = E CRL ~2~RL -~- E E "~" 1/2 o A1/2 t"~RL ORL,R'L' t--~R' L' ~f'~.~L,R' L' 
RL RL R'L' 

The potential parameters, C and A are diagonal matrices in the angular momentum 

indices, and 

CRL = C A nR + C s ( 1 - n R )  

---- (AA)I/2 ftR + (AB) 1/2 ( 1 -  nR) (2.1) 

Here R refers to the position of atoms in the solid and L is a composite label {g, m, m,} 

for the angular momentum quantum numbers, nR is the random site-occupation variable 

which takes values 0 or 1 with probability x or y (x + y = 1) respectively, depending upon 

whether the muffin-tin labeled by R is occupied by A or B-type of atom. 

The "]")RL and "-J"RL,R'U a r e  projection and transfer operators in the Hilbert space T/ 

spanned by the tight-binding basis {IRL> }. 

2.1.2 Configuration-averaged Green function 

We first want to introduce the configuration-averaged Green function which is defined as 

the resolvent of the random Hamiltonian. To do this, we suppress all the indices and 

express the Green function in the following form : 

G(E)  = (EI  - H) -1 = (EI  - C - A -1/2 S A - l / 2 )  -1 

= A  -1/2 { ( E I - C ) / A - S }  A -1/2 (2.2) 

Using the augmented space theorem, we can write the expression of configuration 

averaged Green function as 

<< G(E) >> = ({0} II D { [(EI - cB)/AB] ~)RL @ I.. .  

}-' 
+ a [(EI - C ) / A ]  •RL @ MR -- S TRR' | I D II {~}> 

where 

D II {O}>= (ABT~RL| /)RL| R,L|  > 
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where 5 0 denotes the difference of potentials at A and B. After a little bit of algebra, we 

arrive at a convenient expression as 

where 

R L  

= E 8 [ ( z -  c,~)/~] 
R L  

= E c [ ( z -  c~)/~] 
RL 

= ~ ~ SRL,R,L, TRR,|174 
RL R 'L '  

PR|174 

PR | PL | P~ 

D 
R L  RL  

R L  

and 

A(V) = XVA + yVB i.e. the average of V 

B(V) = (1--2x)(VA--VB) 

r(v) = ~E~(VA- VB) 

Since 

DI{~}>  = A (AL 1/2) I{O}> + F (AZ 1/2) I{R}> = I 1 }  

The ket I1} is not normalized. We first write the above in terms of a normalized ket 

I1> = [A(A-1) ]  -1/2 I1}. We now h a v e :  

<< G(E)  >> = <11 (E i  - _&'- ~ ' -  ~ ' -  ~,')-' I1> <11 (EI - I 2 F " )  - I  I1> 

(2.4) 

where 

RL 
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= ~ ( B [ ( C L - E ) / A L ] / A ( 1 / A L ) }  
RL 

--~ ~ { C [ ( C L -  E ) / / N L ] / A ( 1 / / N L ) }  
RL 

28 

= ~ ~ [A(1/AL)] -1/2 SRL,R'L' [A(1/AL')]-I/2TRR'|174 (2.5) 
RL RILI 

This equation is exactly in the form in which the recursion method may now be applied. 

The computational burden is considerably reduced due to this diagonal formulation, the 

recursion now becomes energy dependent as is clear from the form of the effective Hamil- 

tonian as shown in (2.3). The recursion formalism of the ordered Hamiltonian was free 

of this constraint. This energy dependence makes the recursion technique computation- 

ally unsuitable because to obtain the Green functions we have to carry out recursion per 

energy point of interest. This problem has been tackled using seed recursion technique 

(Ghosh et al 1999). The idea is to choose a few seed points across the energy spectrum 

uniformly, carry out recursion over those points and then interpolate the values of coef- 

ficients across the band. In this way one may reduce computation time. For example, if 

one is interested in an energy spectrum of 200 points, in the bare diagonal formulation 

recursion has to be carried out at all the 200 points, but in the seed recursion technique 

one needs to perform recursions only at 10-15 points. The whole idea stems from the fact 

that in most of the cases of binary alloys, it is seen that the recursion coefficients an and 

/3n vary quite weakly across the energy spectrum. At this point we note that the above 

expression for the averaged << GLL(E) >> is exact. 

2.2 S y m m e t r y  reduction of the augmented space rank 

We mentioned earlier that recursion on the augmented space is not computationally fea- 

sible because of its large rank. For a binary alloy with N sites and with only s-orbitals on 

them, the rank of the augmented space is N • 2 N. Implementing recursion on this huge 

space for a sufficient number of steps to ensure accuracy is often not feasible on available 

computers. However, if we exploit the symmetry both of the underlying lattice in real- 

space and of the configuration space (which arises due to the homogeneity of the disorder 

and arrangements of atoms on the underlying lattice), the rank of the irreducible part of 

the augmented space in which the recursion is effectively carried out becomes tractable. 
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The conceptual advantages in ASF include, apart from analyticity, translational and un- 

derlying lattice symmetries automatically built into the augmented space Hamiltonian. 

This allows us to involve the idea of utilizing symmetry operations present in both the 

real and configuration spaces, in the context of recursion method, reducing the rank of 

the Hamiltonian drastically and making the implementation of ASF feasible. Since the 

augmented space recursion essentially retains all the properties of real-space recursion but 

is described in a much enlarged space, it will be useful to consider symmetry operations 

in real-space recursion first and then consider those in the full augmented space. 

During the recursion, the basis member fun> is generated from the starting state lu1> 

by repeated application of the Hamiltonian. If the starting state belongs to an irreducible 

sub-space of the Hilbert space, then all subsequent states generated from recursion will 

belong to the same irreducible sub-space. Physically, we may understand this as follows: 

the recursion states lUnl carry information on the distant environment of the starting 

state. If the Hamiltonian is nearest-neighbour only, then the state lu2), which arises by the 

application of the Hamiltonian on lull is a combination of states in the nearest shell with 

which lug> couples via the Hamiltonian. Similarly, iun) is a combination of nth neighbour 

shell with which lull is coupled via the Hamiltonian. If 7~ is a point group symmetry 

of the Hamiltonian, then all nth neighbour-shell states which are related to one another 

through the symmetry operator must have equal coupling to lu11. Hence, it is useful to 

consider among the nth neighbour-shell states of which fun) is a linear combination, only 

those belonging to the irreducible subspace and redefine the Hamiltonian operation. 

As an example, take a nearest-neighbour s-state Anderson model on a square lattice, 

with a binary distribution of its diagonal elements. We shall label the tight-binding basis 

with the position of the lattice points in units of the lattice constant, e.g. l(mn)l where 

m, n are integers 0, 4-1, • .... The starting state I(00)) belongs to the one-dimensional 

representation of the point group of a square lattice. This state then couples with linear 

combinations of states on neighbour shells which are symmetric under the operations 

which transforms the square onto itself, i.e. 7r/2, 7r and 31r/2 rotations about the i axis : 

= + I(mO)> + + m > 0 

= + + + > 0 
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I 
I 
I 

--1~- 

Figure 2.1: Nearest neighbour shells around a central site on a square lattice. The colour 

coding indicates the symmetry weight of the sites : white represents sites with weight I, 

gray with weight 4 and black with weight 8. 

I(mn)} = (l(mn)> + I(~n)> + I(m~)> + I ( ~ ) >  . . .  

§ [(urn)> + I(~m)> + I(n~)> + I(~)>)/(2v'~) 

r e > l ,  O < n < m  (2.6) 

Figure 2.1 shows the grouping together of sites with the local symmetry of the square 

lattice on the first three nearest-neighbour shells of the central site. The first and second 

groups in (2.6) are coloured gray in figure 2.1 and the last group coloured black. The 

labels on the groups (shown on the left sides of the equations (2.6)) are confined only to 
the upper right quadrant of the lattice. 

If we go up to N shells (for large N)there are about 2N 2 states in the diamond 

shaped nearest-neighbour cluster. However, there are only (N2/4 + N/2) ~ N2/4 states 

with square symmetry. 

So within this reduction we can work only in 1/8th of the lattice, provided we incor- 

porate proper weights into the states to reproduce the correct matrix elements. If IR) 

and IR') are two states coupled to each other via the Hamiltonian, and both belong to the 

same irreducible subspace, and if IRi), IR2),..., IRwn) are states obtained by operating 
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Figure 2.2: sp-orbitals on a cubic lattice. Only projections on the xy plane are shown. 

The positive parts of the lobes are unshaded, while the negative parts of the lobes are 

shaded. The values of the symmetry factor for the overlaps (fiLL, (gin), defined in the text) 
are shown for each direction. The numbering of sites on the cubic lattice is shown in the 

inset at the bottom right. 

on JR) by the symmetry group operations of the real-space lattice, then ~VR is called the 

weight associated with the state labeled by R. If we wish to retain only the states in the 

irreducible subspace and throw out the others and yet obtain the same results, we have 

to redefine the Hamiltonian matrix elements as follows : 

<RIHIR,)--+ ~/,,R, <RIHIR'>. (2,7) 
VWR 

In the above prescription, the new irreducible basis only reflects the symmetry of the 

underlying lattice and holds properly for a model system which has s-like orbitals only. But 

for a real system, the TB-LMTO minimal basis contains members with other symmetries 

as well. For example, in a cubic lattice with a spd minimal basis, we have basis members 

with s, p, eg and t2g symmetries. The symmetry of the orbitals is reflected in the two- 

centered Slater-Koster integrals and this prohibits overlap integrals at certain positions, 

called symmetric positions with respect to the overlapping orbitals. A few of these sym- 
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1 < s ~ ~  1 1 ~ ~ >  1 

t=d~ ~ t pdo 

~1 ~0 

, ~/ 1 tdd~ 
V 1 

t 

~ tdd~ 
t dd/t ~/ 1 

1 
Figure 2.3: Overlaps involving d orbitals in the eg and t2g symmetries. Only projections in 

the xy plane are shown. The positive parts of the lobes are unshaded, while the negative 

parts of the lobes are shaded. 

metric positions for a simple cubic lattice are shown in figure 2.2. For the sake of clarity we 

have shown only the projections on xy plane. We have indicated the positive and negative 

parts of the orbital lobes by different shades. From figure 2.2(b) it is easy to argue that 

since the Hamiltonian is spherically symmetric and the product Cs(000)r (010) is positive 

in the upper right quadrant and negative in the upper left quadrant : (0, sIHI2, px} = 0. 

The same is true for (0, slHl2 , Px) = 0. Similarly, (0, sIH[3 ,p~} --- (0, slHI3, pxl --- 0. 

On the other hand, (0, slHll,pxl = -(0, slHIi, px} ~ 0. 

The above is an illustration; detailed arguments for the orbital symmetry have been 
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discussed by Harrison 1999. 

Table 2.1 provides the conditions for obtaining the orbital based symmetry factor 

~LL, (R - R') for a lattice with cubic symmetry. We shall describe the direction of/~-/~P 

by the direction cosines (gmn). The table gives the details for the calculation of the 

symmetry factor /3LL,(gmn) on a cubic lattice. A look at figures 2.2 and 2.3 shows why 

this factor needs to be introduced. 

For the s-orbital overlaps the symmetry factor is always 1 (figure 2.2(a)). All six 

neighbours in the cubic lattice in the directions (I00), (i00), (010), (0i0), (001) and (00i) 

are equivalent with the same overlap integrals tss~ (only four are shown in the xy plane). 

We may then reduce the lattice and retain only the neighbour in the (I00) direction and 

scale the overlap tss~ by the appropriate weight (i.e. 2 in this case) as discussed earlier. 

The spx overlaps (figure 2.2(b)), in the (010), (0i0), (001) and (00i) directions are zero. 

This can be deduced immediately by noticing that the overlap products in these directions 

are positive for x > 0 and negative for x < 0. Therefore, although they are related to one 

another by the symmetry operations of the cubic lattice, the overlaps in the (I00) and 

(i00) directions are different from those in the (010),(0i0),(001) and (00i) directions and 

we will have to set the latter to be zero by introducing the symmetry factor ~LL' (~mn). 

<RLIHIR, L, ) --+ ~/,.u, ~LL,(~mn) (RLIHIR'L' ) (2.8) 
V WR 

where ~LL'(~mn) is 0 if R' is a symmetric position of R with respect to L and L', 

otherwise it is 1. 

Figure 2.3 illustrates some of the overlaps involving the d states with eg and t2g 

symmetries. With this simple reduction procedure the real-space part can be reduced 

to i/8th, keeping only the sites in the (x > 0, y > 0, z > 0) octant and suitably re- 

normalizing the Hamiltonian matrix elements as described earlier. 

We still have not exhausted all the symmetries in the full augmented space. As 

discussed earlier, this space is a direct product of the real (lattice-orbital) space and 

the configuration space which are disjoint. As a consequence the symmetry operations 

apply independently to each of them. Since the disorder is homogeneous, the cardinality 

sequence in configuration space itself has the symmetry of the underlying lattice. To see 
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Table 2.1: Table showing the Slater-Koster parameters and the consequent symmetry 

factors ~mn The parameters for which the ~ zero condition have been omitted can be 
H L L '  �9 

obtained from the last column by permuting the direction cosines. 

Matrix 

Element 

S l a t e r - K o s t e r  

Expres s ion  

S y m m e t r y  

F a c t o r  

C o n d i t i o n  for it 

t o  b e  zero 

t88 
t8~2 

ts,xy 

ts,x2_y2 

ts,3z2-r 2 

t88o- 
6 t,p~ 

45 6m t~d~ 

4 5 / 2  (e2-,~ 2) t ~  
[~2-1/2(e2+m2)] t ~  

8~8 
l~mn 

8,px 

s,xy 
]~s 

8~X2--y 2 

]~lmn 
8,3Z2--~ '2 

6 = 0  

6 = 0  or m = 0  

6 = m  

n = 1 / 4 5  

tX~X 

tx,y 

tx,xy 

tx,yz 

tx,x2-y2 

tz,x2-y2 
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I s 

Figure 2.4: Equivalent configurations on a cubic lattice. Configurations labelled by T are 

shown as light spheres, while those labeled by ~ are shown as dark spheres. The top 

twelve configurations are equivalent, while the bottom three are equivalent. The lower 

right inset shows the numbering scheme used for the lattice sites in the main text. 

this, let us look at figure 2.4 where we show a part of a cubic lattice where the central 

site is occupied by a configuration labelled by T, while two of the six nearest-neighbours 

are occupied by configurations labeled by $, and four of them by Ts. We note that  the 

twelve configurations in the first three rows of the figure, where the two Ss sit at distances 

v/2 times the lattice constant, are related to one another by the symmetry operations 

of the cubic lattice. For example, the second to the fourth configurations on the top 

row of figure 2.4, can be obtained from the first by the rotations 7~(7r/2, ~), T4(Tr, ~) and 

T~(37r/2, ~) respectively. The configurations are described by cardinality sequences (as 

described earlier). The cardinality sequences for the four configurations on the top row 
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of figure 2.4 are : {13}, {23}, {i3} and {23}. From the figure it is easy to see that  : 

{23} = n(Tr/2,~) {13} ; {i3} = n(~r,~) {13} and {23} = n(37r/2,~) {13} 

This equivalence of the configurations on the lattice is quite independent of the sym- 

metries of the Hamiltonian in real-space discussed earlier. Thus, in augmented space, 

equivalent states are IR Q {C}> and the set I~R | ~{C}> for all different symmetry oper- 

ators ~ of the underlying lattice. Again the symmetry of the orbitals also rules out the 

operation of the Hamiltonian at certain symmetric positions discussed earlier. 

Once we have defined the reduced Hamiltonian, recursion on the reduced augmented 

space with starting state lUl> -- IRL| gives the configuration averaged Green function 

directly. 

In order to give the readers a flavour of the reduction in storage and CPU time, we 

have carried out two sets of recursion calculations : first, a standard recursion on ordered 

Ag on a fcc lattice, and second, an augmented space recursion with 15 seed points on 

a fcc alloy Ag50Pd50 both with and without symmetry reduction. The calculations were 

done on a P4 machine with 1.13 GHz clock speed and 256 MB RAM. 

The first point to note is that convergence of the recursion technique is measured by 

the convergence of the energy moments of the corresponding density of states obtained 

from recursion (Haydock 1980, Chakrabarti and Mookerjee 2002). These energy moments 

are defined by : 

Mn = / 7  F dE Enn(E) where f7~ dE n(E)= ne 

where ne is the number of valence electrons. The convergence of these moments with the 

number of recursion steps N, from which the density of states n(E) and the Fermi energy 

EF is calculated, is reflected in the errors 

Figure 2.5 shows the convergence of the first three moments for a AgsoPds0 disordered 

alloy on a fcc lattice in a spd TB-LMTO minimal basis set. It is clear from the figure 

that  for a convergence within a specified error window one has to carry out recursion for 
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Figure 2.5: Convergence of the errors in energy moments of AgsoPds0 as functions of the 

recursion step. 

a specific large number of steps determined by the error window. Symmetry reduction 

allows us to carry out recursion exactly over a much larger number of steps than is 

possible for ordinary recursion, given our computational resources. There was a similar 

observation made in an earlier estimate of the errors of the recursion method (Chakrabarti 

and Mookerjee 2002). In order to carry out this many recursion steps we have to generate 

at least this many shells exactly around the starting site in order to avoid surface-like 

effects. Haydock et al 1972 have suggested a trick which allow us to obtain extra levels 

of continued fraction without severe consequence on the accuracy of the calculations. 

However, this trick gives even better accuracy if the starting point of the extension is 

itself after a larger number of exact recursions, which our symmetry reduction allows us 

to do. 

For the case of the ordered fcc lattice, figure 2.6 shows how the size of the map 

increases as we increase the number of nearest-neighbour shells from a starting site, both 

with and without reduction. Table 2.2 shows the details of the CPU time and storage 

space reduction for recursion after applying the symmetry reduction. We have carried out 

calculations both on a simple model system with s-states on a fcc lattice, as well as for Ag 

(with spd minimal TB-LMTO basis) also on a fcc lattice, both with nearest-neighbour 
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Figure 2.6: Showing how the number of lattice sites increase with increasing the number 

of shells in the real-space map and its reduced version. This is for an ordered fcc lattice. 

hopping integrals only. 

For the calculation of a disordered binary alloy on a fcc lattice, figure 2.7 shows the 

enormous decrease in the size of the augmented space map after application of symmetry 

reduction for a seven nearest-neighbour map on a fcc lattice. Table 2.3 tabulates the 

reduction in storage and CPU time for a 7 shell, II step recursion in augmented space 

carried over 15 seed points using TB-LMTO potential parameters and structure matrix to 

built the Hamiltonian. The power of symmetry reduction on storage space is more evident 

Table 2.2: Comparison between system size and CPU time (in seconds) taken for recursion 
on a P4/256 machine for a full fcc lattice and the reduced lattice in real-space. The model 
system consists of s-states with nearest-neighbour hopping integrals and the Hamiltonian 
for Ag is taken from a TB-LMTO calculation with a minimal spd basis. 

Full lattice Reduced lattice 

System Shells I Steps I Sites I CPUtime I Sites I CPUtime 

Model I 20 I 20 I 24739 I 2.36 3385 0.54 

Ag 20 I 30 I 24739 I 47.15 3385 I 15.83 
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Figure 2.7: Showing how the number of lattice sites increase with increasing the number 

of shells in an augmented space map on a disordered binary alloy on a fcc lattice. 

in this example. Such reduction will allow us to stretch our nearest-neighbour map up 

to 9-10 shells, stepping up our accuracy. Figure 2.8 shows the reduction in CPU time as 

we increase the number of recursion steps. Further, since the number of sites in the map 

decreases, the number of individual applications of the 9 • 9 Hamiltonian also decreases 

significantly, as do the number of operations involved in taking various inner products. 

This will reduce the inherent cumulative error of the recursion technique and lessen the 

probability of the appearance of ghost bands which often plague recursion calculations. 

Table 2.3: Comparison between system size and time (in seconds) taken for recursion 

(using 15 seed points for Ag50Pd50) on a P4/256 machine for a full fcc lattice and the 

reduced lattice in augmented space. The model is that of an alloy whose constituents 

have only s states and the Hamiltonian for Ag50Pd50 is taken from a TB-LMTO minimal 

spd basis for each constituent. 

Full lattice Reduced lattice 

System I Shells Steps I Sites CPUtime I Sites CPUtime 

Model (50-50) 7 I 7 49476 I 6.67 6856 1.21 

Ag5oPd5o ] 7 I 11 I 49476 I 1136.6 6856 336.27 
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Figure 2.8: CPU time taken per recursion step for a AgsoPd50 disordered binary alloy on 

a fcc lattice in a spd TB-LMTO minimal basis set. The times with and without symmetry 

reduction are shown. 

2.3 Conc lus ions  

To deal with disorder in real alloys, we have described ,the implementation of ASR within 

the framework of TB-LMTO method. The ASR with its terminator approximation works 

well going beyond the standard single-site mean-field theories. We have carried out the 

symmetry reduction in the ASR calculations using the symmetries of both the underlying 

lattice and orbitals on the lattice, and also symmetry of the random configurations on the 

lattice. Considering all these symmetries we keep recursion basis vectors in the irreducible 

subspace of the Hilbert space which helps to reduce the rank of the Hamiltonian in the 

augmented space. This symmetry reduction helps us to carry out recursion for many 

more steps exactly and this is required to get a proper termination of the continued 

fraction. In addition, the symmetry reduction saves the computer memory and reduces 

the computational time, which is very effective for a self-consistent calculations. In this 

chapter we have described the details of the implementation of this symmetry reduction 

and the modifications required in the standard recursion method. We propose using 

the symmetry reduced version of the augmented space recursion in our future work on 

disordered alloys. 



Chapter  3 

A u g m e n t e d  space recursion in reciprocal space 

3.1 In troduct ion  

T h e  augmented space recursion carried out in a minimal basis set representation of the 

tight-binding linear muffin-tin orbitals method (TB-LMTO-ASR) has been proposed ear- 

lier by Saha et al 1994b, Saha et al 1996 as an interesting technique for incorporation 

of the effects of configuration fluctuations about the mean-field (the coherent potential 

approximation or the CPA) for random substitutionally disordered alloys. This can be 

achieved without the usual problems of violation of the Herglotz analytic properties 1 of 

the approximated configuration-averaged Green functions for the SchrSdinger equation 

for these random alloys. Earlier we had used this technique to look at short-ranged order- 

ing in such systems (Mookerjee and Prasad 1993, Dasgupta et al 1995), as well as local 

lattice distortions caused by size difference between the constituents of the alloy (Saha 

and Mookerjee 1996). 

One of the dissatisfying features of the method, and this has to do with the recur- 

sion part, is the truncation of the continued fraction expansion of the Green function. 

Truncation in the configuration space part of the problem can be handled easily. We 

truncate out only those configurations which occur with low probability and contribute 

to the tail of the continued fraction. It is on the truncation in real-space that  we do not 

~ of this chapter has been accepted for publication : K K Saha, A Mookerjee and O Jepsen, 
Phys. Rev. B (2004); cond-mat/0405175. 

1A complex function f(z) is called Herglotz if it is analytic everywhere except on the real z-axis and 
sgn(Im f(z))-- -sgn(Im(z)). 

41 
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have a controllable handle. Any truncation in real-space means that our recursion has 

been carried out on a finite cluster and edge effects become important. Quantities which 

converge fast are integrals of the density of states multiplied by well-behaved functions 

of energy. We can also estimate the errors committed by truncating at a particular step 

(Chakrabarti and Mookerjee 2002). However, the errors in the density of states itself 

cannot be controlled. This is because even a small perturbation (like truncation after a 

large number of recursive steps) has a profound effect on the spectrum of the Hamilto- 

nian (Haydock 1980). The problem of truncation has always been laid at the door of the 

recursion method. 

Is it not possible to modify the TB-LMTO-ASR in such a way that the truncation 

is carried out only in configuration space ? One way of reducing the gigantic rank of 

the Hamiltonian in a real-space-labelled basis, is to go over to reciprocal-space. In the 

k labelled basis, for a basis involving only .s, p and d states, the operators in reciprocal- 

space have rank 9. However, to do this we require lattice translational symmetry. In 

a random binary alloy, for instance, this is not immediately possible. However, the full 

augmented space, which is the direct product of the real-space spanned by the site labelled 

basis (__Ri} and the configuration space spanned by the configurations of the system, 

possesses translational as well as point group symmetries (Saha and Mookerjee 2004a). 

Configurations of a binary alloy can be labelled by a binary sequence of 0 and 1 (or T and 

if Ising models appeal to you more) and uniquely described by the cardinality sequence 

(C}, i.e. the sequence of positions where we have a 1 or a ~ state. We had shown earlier 

that in the subspace spanned by the reference states (~}}, in which the configuration 

average is described, we have full lattice translation symmetry provided the disorder is 

homogeneous (Biswas et al 1995). The same statement would be true if there is short- 

ranged order or local lattice distortions, provided the short-ranged order or local lattice 

distortions are probabilistically identical anywhere in the system. A consequence of this is 

that probability densities are independent of the site label and the configuration-averaged 

quantity : 

~--~.~--~. e x p { ~ ( k . / ~ - k ' . R j ) }  << G(Ri, Rj, z) >> = G ( k , z ) 5 ( k - k ' )  
R~ n~ 

Based on this, we had proposed a TB-LMTO-Recursion in the reciprocal augmented 
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space (Biswas et al 1997). The recursion, as we shall show subsequently, is entirely in 

configuration space for each k label. The truncation is also in configuration space alone 

and leads to calculation of the configuration averaged spectral densities. These spectral 

densities are not a bunch of delta functions, as in the case of ordered systems, but the 

complex self-energies, in general both energy and k dependent, shift the peaks as well as 

broaden them : leading to fuzzy, complex band structures. 

Although our method allows us to carry our augmented space recursion in reciprocal- 

space, for many physical problems we need to carry our integration over the Brillouin 

zone. For instance, to obtain the density of states : 

B d3k-  << n(E) >> = z 8~-5~ a~Iu << A(k,  E) >> 

Another contribution of this work, described subsequently, will be to modify the tetra- 

hedral method of Brillouin zone integration, so that  we may carry out a similar integration 

technique for integrands which are smoother than the highly singular spectral functions 

of the ordered systems. The proposed Brillouin zone integration is closely related to that  

of Jepsen and Andersen 1971 or Lehmann and Taut 1972 for ordered systems. 

3.2 A u g m e n t e d  space recursion in k-space 

We shall start from a first principles TB-LMTO method (Andersen 1975, Andersen and 

Jepsen 1984) in the most-localized representation (c~ representation). This is necessary, 

because recursion requires a sparse representation of the Hamiltonian. In this represen- 

tation, the second order alloy Hamiltonian is given by 

H (2) = E~ + h - h o h  

where 

_ ~ i / 2  A ~ 2  h = ~ (Ca  Eva)PR + ~ ~ ".-'a SRR, TaR, 
R R R t 

o = Z oa Pa (3.1) 
a 
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and SnR, is a matrix of rank Lma~. C, A and o's are diagonal in L space and are the 

potential parameters of the TB-LMTO method; o -I has dimension of energy and E~'s 

are the reference energies about which the muffin-tin orbitals are linearized. 

Applying the augmented space theorem as in equations (2.1)-(2.3) the configuration- 

averaged Green function becomes : 

<< G(k,z) >> = (k | {0}l(zI-  H(2))-llk | {0}). (3.2) 

where G and H (2) are operators which are matrices in angular momentum space, and the 

augmented k-space basis Ik, L | {0}} has the form 

( 1 / v ~ )  ~ exp(- ik  �9 R)IR | {0}). 
R 

The augmented space Hamiltonian ~(2) is constructed from the TB-LMTO Hamilto- 

nian H (2) by replacing each random variable nR by operators MR. 

If we now follow the same mathematical manipulations as in the augmented space 

recursion in real-space (equations (2.2)-(2.5)) we obtain: 

<<G(k,z)>> = ( 1 1 ( z I - A + 1 3 + F - s + ( J + s ) 5 ( J + ~ ) ) - l l l  > 

where 

X = E { A ( C A - 1 ) / A ( A - 1 ) }  V R Q Z  
R 

R 
F = E { F ( ( z I - C ) A - I ) / A ( A - 1 ) }  

R 

pR| 

(3.3) 

and J = JA + JB + JF and 5 = 5A + 5B + 5F where : 

= E {A((c -  E.)A-1)/A(A-1)} 
R 

JB = ~ { B ( ( C - E ~ ) A - 1 ) / A ( A - 1 ) }  
R 

JF : E { r ( ( C  - E v ) A - 1 ) / A ( A - 1 ) }  
R 

PR| 
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5A = ~ { A ( o A )  A(A-1)}  T'n| 
R 

5B = E { B ( o A )  A ( A - 1 ) }  ~t:~R | T)~R 
R 

5F = }-~{F(oA) A(A-1)} PR | {T•* + :r~r}. (3.4) 
R 

In case there is no off-diagonal disorder due to local lattice distortion because of size 

mismatch:  

g = ~ ~ A ( A ~ )  -1/2 SRR, A(A_~,I) -1/2 TRR, | Z. 
R R t 

This equation is now exactly in the form in which recursion method may be applied. At 

this point we note that  the above expression for the averaged Gnn(k, Z) is exact�9 

The recursion method addresses inversions of infinite matrices (Haydock 1981, Hay- 

dock and Te 1994)�9 Once a sparse representation of an operator in Hilbert space, ~(2), is 

known in a countable basis, the recursion method obtains an alternative basis in which 

the operator becomes tridiagonal. This basis and the representations of the operator in 

it are found recursively through a three-term recurrence relation : 

[Un+l} = n ( 2 ) [ u n }  - an(k)[un} -/32(k)lun-1} (3.5) 

with the initial choice ]ul} = [RL) | [1) and/312 = 1. The recursion coefficients an and 

/3n are real and are obtained by imposing the ortho-normalizability condition of the new 

basis set as : 

a n ( k  ) = 

and also 

{n[n(2)] n)  2 { n -  lIH(2)]n} 
�9 ~ - l ( k )  = 

(nl~}  ' {~ln} 
{mlH<2)ln ) = 0  for m # n,n=t= 1 

To obtain the spectral function we first write the configuration-averaged L-projected 

Green functions as continued fractions : 

z - alL(k) -- 

<< GLL(k, z) >> = 
Z2 1L 

/3h(k) 

z - a 2 L ( k ) -  
/3~L(k) 

o 

z -  aNL(k)  -- r L ( k ,  z) 
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where FL(k, z) is the asymptotic part of the continued fraction. The approximation 

involved has to do with the termination of this continued fraction. The coefficients are 

calculated exactly up to a finite number of steps {an,/3n} for n < N and the asymptotic 

part of the continued fraction is obtained from the initial set of coeff• using the idea 

of Beer and Pettifor terminator (Beer and Pettifor 1982) as described in chapter I. 

It is important to note that the operators A, B, F are all projection operators in real- 

space (i.e. unit operators in k-space) and acts on an augmented space basis only to change 

the configuration part (i.e. the cardinality sequence {C} ). 

All{C}) = AII[{C}), 

Bll{C}) = A211{e}> 6(R e {C}), 

FII{C}) = A311{C+R}>. 

The coefficients A1 -A3  can been expressed from equation (3.3). Similar expressions hold 

for the operators in equation (3.4). The remaining operator S is diagonal in k-space and 

acts on an augmented space only to change the configuration part : 

= e x p  ( - r 1 6 2  - x}>. 
X 

(3.6) 

Here XS are the nearest-neighbour vectors. The operation of the effective Hamiltonian 

is thus entirely in the configuration space and the calculation does not involve the space 

T/at all. This is an enormous simplification over the standard augmented space recursion 

described earlier (Saha et al 1994b, Saha et al 1996, Dasgupta et al 1997, Ghosh 

et al 1999), where the entire reduced real space part as well as the configuration part 

was involved in the recursion process. Earlier we had to resort to symmetry reduction 

of this enormous space in order to make the recursion tractable. Here the rank of only 

the configuration space is much smaller and we may further reduce it by using the local 

symmetries of the configuration space, as described in previous chapter. However, this 

advantage is offset by the fact that the effective Hamiltonian is energy dependent. This 

means that to obtain the Green functions we have to carry out the recursion for each 

energy point. This process is simplified by carrying out recursion over a suitably chosen 

set of seed energies and interpolating the values of the coefficients across the band. 
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3.3 Spectral density and fuzzy bands 

47 

The self-energy which arises because of scattering by the random potential fluctuations is 

of the  form �9 

EL(k, z) = •h (k )  
z - C~2L(k) - /~L(k) 

~ 

Z--~NL(k)--rL(k,z) 

So the continued fraction can be wri t ten in the  form 1/(z -/~L(k) -- EL(k, E)) ,  where 

/~L ( k ) =  a lL(k) .  

The  average spectral  function << Ak(E)  )> is related to the  averaged Green function 

in reciprocal-space as : 

<< Ak(E)  • = ~ << AkL(E) >, 
L 

where 

<< AkL(E) >> -- 
1 

lim {Im << GLL(k,E--i6) >>}. 
71" 6-*0+ 

To obtain the complex bands for the alloy we fix a value for k and solve for : 

z -  EL(k) -  EL(k,E) =O 

The real part of the roots will give the position of the bands, while the imaginary part 

of roots will be proportional to the lifetime. Since the alloy is random, the bands always 

have finite lifetimes and are fuzzy. 

3.4 Generalized tetrahedron method  integration in k-space 

To obtain the density of states we need to integrate over the Brillouin zone 

B dak << n(E) >:> = ~ << dkL(Z) ~> 
n Z 871" 3 

For ordered systems the spectral function consists of delta functions : 

~j Aj6(E- Ej(k)), with j labeling a particular energy band. 

highly singular, the integral (3.7) has to be calculated carefully. 

(3.7) 

A~(E) = 

The integrand being 

Jepsen and Andersen 
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1971 and Lehmann and Taut 1972 had proposed an accurate technique : the tetrahe- 

dron method, for obtaining such integrals accurately. In this section we shall discuss an 

extension of that method for application to disordered systems. 

In the presence of disorder the spectral function is smoother and we may rewrite it in 

terms of the real and imaginar:~ parts of the disorder induced self-energy : 

<< AkL(E) >> = -E~(k,E)/Tr (3.8) 
( E - / ) n ( k ) -  ELR(k, E))2 + E~(k, E) 2 

Such a function is peaked around the zeroes of E - / ) n  ( k ) -  ELR(k, E) and the E l(k,  E) 

provides the width of the peaks. The spectral function behaves roughly as Lorentzian in 

the vicinity of its peaks. We may reduce the above expression to one amenable to the 

tetrahedron integration form by the following trick : 

( E '  - f J d E ' ( E -  E ' -  ELR(k, E)) 2 + E~;(k, E) 2 

= f dE' WkL(E, E') 5 ( E ' - / ) z ( k ) )  

where }'VkL is defined as a weight function. Now integrating above over the Brillouin 

zone, we may get configuration-averaged density of states (DOS) �9 

B d3k <<n(E)>> = ~ <<AkL(E)>> 
L Z 871.3 

L 871"3 

At this stage, in order to simplify notation we shall drop the L index from all L 

dependent factors and understood that the eventual result is summed over all L. In 

order to perform the above integration over BZ, we have generalized tetrahedron method 

developed by Jepsen and Andersen 1971 and Lehmann and Taut 1972 to include the 

weight function t'Yk(E, Et). We have followed the idea of MacDonald et al 1979. In 

this generalization the energies as well as the weight functions are linearly interpolated 

throughout the vertices of small tetrahedrons. We label the energies at the vertices of the 

ith tetrahedron/)~,/)~,/)~ a n d / ~ ,  where the indices correspond to increasing magnitude 
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of the energy, i.e. /~  _> /~  _> /~  >_ E l and the corner values of the weight function be 
W~, ~ i YY~, W~ and ~V~. Then the averaged DOS may be written as : 

N 4 

<< n(E) >>= VMz f ~E' ~ C ~ ~ 1~ W~ (3 9) 
i = l  k----1 

where I~ I k ( E , E ' ,  ~ i ~ i ~ i ~i = El, E2, E3, E~), N is the number of tetrahedral micro-zones and 

VMZ is the micro-zone volume and also, 

for El < E'  < El  

for E~ < E ' ~ E ~  

N . 

for~]~ < E ' <  E l 

C i = 3 F21F31F41/(E'- El) 
Ii = (F12 + F~3 + F14)/3 

I~ = Fkl/3,  k = 2 , 3 , 4 .  

C ~ = 3 (F23Fal + F32F24)/E41 

I~ = F14/3 + F13F31F23/CiEal 

l i  = F2~/3 + F}4F=/C~E,1 

g = F32/3 + F21F23/CiEal 

Ii = F4~/3 + F4:F:4F3:/C~E4~ 

C i = 3 F14F24F34/(Ea- E')  

I~ = Fk4/3, k = 1 , 2 , 3  

II = (F41 + F42 + F43) /3 

where Emn = E , ~ -  En and Fm~, = ( E ' -  E,~)/Emn. Also << n(E)  >> is zero for E'  < / ~  

or E'  > / ~ .  

3.5 Computat ional  details and results 

For ordered faces the calculations have been performed in the basis of LMTO in the atomic 

sphere approximation including combined corrections. The scalar-relativistic calculations 



Chapter 3. Optical properties of compounds and disordered alloys 50 

O 
E)  
O 
O 

c~ 

8 
~  

0 
$ 
t-, 

E 
:3 

z 

5 i 

m 

2 

1 

09  

' I ' I ' I ' I ' I ' I 

o o R e a l - s p a c e  la t t ice  
[] [] k - s p a c e  la t t ice  

t 
2 3 4 5 6 7 8 

N u m b e r  o f  s h e l l s  

Figure 3. I: Showing how the number of lattice sites increase with increasing the number 

of shells in the real-space and reciprocal-space map. 

in this case are carried out for equal atomic spheres. The k- space integration was carried 

out with 16 • 16 • 16 mesh resulting 145 k-points for cubic primitive structure in the 

irreducible part of the Brillouin zone. 

In figure 3.1 shows how the size of the augmented space map (in both k-space and 

real-space representation) increases as we increase the number of nearest-neighbour shells 

from a starting site. We note that the reciprocal-space map at a particular recursion step 

is much smaller than the real augmented space map. This is because in the reciprocal 

augmented space we generate only the different configurations. The full real-space lattice 

map has been collapsed using lattice translational symmetry in full augmented space. 

We have first carried out calculations on a simple model disordered binary alloy system 

described by a s-state tight-binding Hamiltonian with nearest-neighbour hopping integrals 

only. 

In figure 3.2 we compare the results obtained using reciprocal and real space formula- 

tion of ASR. The k-space integration has been performed in two ways. The brute force 

method, where we replace the integral by a sum with appropriate weights at different 

k-points, generates some unusual oscillations particularly in the lower part of the band. 
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Figure 3.2: Comparison of the average (50-50) density of states for a model fcc alloy 

calculated using k-space formulation of ASR (solid curve) and using real-space formulation 

of ASR (dotted curve), k-space integration has been performed in two ways : (a) using 

Tetrahedron Method (right solid curve) (b) multiplying spectral function Ak(E) by k- 

point weight and then summing up over k (left solid curve). In both figures we note that 

the oscillations shown by the brute force technique is smoothened by the TM. 

However, the tetrahedron method gives smoother results which are in good agreement 

with the real-space calculations as well. 

We now go over to calculations for the disordered Ni50Pt50 alloy. We have used the 

minimal basis set of the TB-LMTO with nine orbitals per atom (s, p and d) to set up our 

Hamiltonian. 

In figure 3.3 we present the results for the spectral functions for Ni50Pt50 alloy along 

the F- X direction. We have chosen 11 equidistant k-points between F and X points and 

show the spectral function in those points. These spectral functions shows good agreement 

with the same results obtained from KKR-CPA calculations (Pinski et al 1991). It may 

be seen that the widths of the spectral function varies considerably as a function of k 

and E. There are some simple trends concerning this behaviour. The sharp peaks on the 

lower band edge near the F point appear as the s-like band. As we go from F towards 

the X point the s-band hybridizes with the p-band and the peak becomes wider. The 

structures on the upper band edges are mostly due to the overlap of the d-states of Ni and 
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Figure 3.3: The spectral function of NisoPts0 alloy plotted as a function of energy at 

several k-points along the F - X direction. 

Pt. The disorder effects on these d-dominated states are strong and there is significant 

broadening. 

In figure 3.4 we presented the complex fuzzy bands of the disordered alloy. The disorder 

smearing is maximum in the overlapping d-bands of the constituents, and is negligible in 

the s-like part. This is also apparent in the spectral functions shown earlier. The sharp 

s-like peaks flank wide d-like structures in figure 3.3. 

Finally, using our modified tetrahedron method we have calculated the density of states 

(DOS) of ordered and homogeneous disordered NiPt alloys from its spectral function. Side 

by side we have also carried out the same calculation in real augmented space. In figure 

3.5 we show the g-projected density of states for the Ni50Pt50 alloy. We compare the k- 

space results with those found from real-space recursion. The main improvement occurs 

in the eg and t2g d-bands. In particular, the sharp feature straddling the Fermi energy is 

better reproduced in the k-space recursion than that in real-space. The reason for this 

is the early truncation of recursion in real-space and the consequent finite size effects to 

which the more localized d-states are more susceptible. 

In figure 3.6 (top row) we show a comparison between average DOS calculated by real 
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Figure 3.4: (Right) Ni (dashed lines) and Pt  (bold lines) energy bands on a lattice appro- 
priate to the NisoPt~o alloy, in the F - X  direction. Average lattice parameter ao -- 7.127au 
was fixed after minimizing the energy. (Left) The fuzzy band of the disordered NisoPtso 
system plotted along the same direction. 

and reciprocal-space recursions. As discussed before, it is the sharp feature straddling 

the Fermi energy with major contribution coming from the Ni d-states which are not well 

reproduced in the real-space technique. In this point our k-space calculations agree with 

the KKR-CPA results of Pinski et al 1991. In the left lower panel of figure 3.6 we show 

the DOS for pure Ni and Pt, but in a lattice with the lattice parameter the same as in the 

alloy. We may compare this with the DOS for the disordered alloy. The right most three 

peaks at -0.25, -0.16 and -0.II Ryd. of the disordered DOS are mostly contributed by 

Ni whereas the left (lower energy) structures come (large shoulder at -0.57 Ryd.) mostly 

from Pt. The sharp peaks in the elemental results are obviously because of the Van Hove 

singularities of the DOS. The effect of disorder mainly smears out the sharp peaks present 

in the DOS. The disorder smearing is more pronounced for the d-like parts of the band. 

We remark that there is very little shift in the DOS-related features between the ordered 
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Figure 3.5: Comparison of the partial density of states of NisoPts0 alloy calculated us- 
ing augmented space recursion in (a) real-space formulation (left panel). (b) k-space 
formulation (right panel). 

and disordered states. 

Finally, in the right lower panel we show the photoemmission spectrum of NisoPts0 

reported by Nahm et al 1996. The general features with a double peak straddling the 

Fermi energy and a lower energy shoulder are clearly seen. The photoemmission spectra 

are convolutions of the density of states with a weakly energy/wavenumber dependent 

transition matrix. This may lead to shifting and smearing of the prominent peak struc- 

tures. Keeping this in mind, our k-space recursion results are in good agreement with 

experiment. 
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Figure 3.6: Comparison of the density of states of the Ni5oPt50 alloy calculated using 

augmented space recursion in (a) k-space formulation. (b) real-space formulation. (c) 

Density of states of Ni (solid line) and Pt (dotted line) on a lattice appropriate to the 

Ni5oPt5o alloy. (d) Valence-band photo-emission spectra of Ni50Pt50 with photon energy 

h~ = 60 (Nahm et al 1996). 

3 . 6  P a r a l l e l i z a t i o n  o f  c o d e s  

As a programmer ,  we may find tha t  we need to solve ever longer, more memory  inten- 

sive problems, or simply solve problems with greater  speed t han  is possible on a serial 

computer .  We can t u rn  to parallel computers  to satisfy these needs. Using parallel pro- 

g ramming  methods  on parallel computers  gives us access to greater  memory  and Central  

Processing Unit  (CPU) resources not available on serial computers.  Hence, we are able to 

solve large problems tha t  may not have been possible otherwise, as well as solve problems 

more quickly. 
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The ASR in its reciprocal-space formulation requires a huge computational time as 

well as memory space. In the irreducible part of the Brillouin zone of a cubic primitive 

structured system, we have considered 16 • 16 • 16 mesh which results 145 k-points. 

For each angular momentum index, we needed to calculate spectral functions at these 

k-points. In order to carry out a calculation on a real alloy system, a serial program 

required a very long time. We have, therefore, parallelized our codes, leading to faster 

computation. 

Before going into the details of parallelization of our code, let us first clear our ideas 

about the structure of the ASR program on a serial computer. In the figure 3.7 (left 

panel) we have shown a brief flowchart of the k-space formulation of the ASR code. As 

you see in the flowchart, the code has basically three loops : angular momentum loop, 

k-point loop and energy loop. For a given L and k, the innermost loop calculates the 

spectral functions AkL(E) at all energy points. Once the calculation of AkL(E) for all 
k-points is over, we have to carry out a Brillouin zone integration to get the projected 

density of states. 

In the right column of the same figure we have shown the schematic diagrams of the 

parallel codes. In our Beowulf Cluster system we have 10 nodes, each of them is a dual 

Xeon 2.4 Ghz processor, with 2 GB RAM. So we use any of these processors as a master 

and rest of them (i.e. 39 processors) as slaves. The job in the innermost loop (put in a 

dotted box in the flowchart) is shared by the slaves. We shall now describe the structure 

of the parallel codes, and the way it runs in the following steps : 

�9 Master broadcast (MPI_BCAST) a copy of the initial inputs (for example, aug- 

mented space map, potential file, energy points, k-points data, etc.) to all slaves in 

a group. 

�9 For a given L (angular-momentum index) master sends (MPI_SEND) 39 k-pints to 

39-slaves one by one. 

�9 Slaves receive (MPI_RECV) jobs from master, carry out recursion in all seed en- 

ergy points, fit the recursion coefficients along the energy spectrum, then calculate 

spectral function AkL(E), and finally feedback output to the master. 
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Figure 3.7: Flowchart of the augmented space recursion method (left) and schematic 

flowchart for parallelization of the same code (right). 

�9 When master receives output AkL(E) from different slaves, it does not ensure that 

the output will come in the same order as master passed input to slaves. Because all 

the slaves may not be equally efficient. Any of them may be busy with some other 

job submitted by another person. So while receiving output master also receives the 

k-point at which the AkL(E) has been calculated. In this way master always keeps 

track of the input and output. Master always allocates some memory space to keep 

the outputs coming from different slaves. 

�9 As soon as master receives an output from a slave immediately it gives it a new job 
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for another k-point. 

�9 Once all the jobs for all k-points are completed, that is, all the spectral functions in 

all energy and k-points are ready, master itself carry out the k-space integration to 

calculate the projected (at the given L) density of states. During this integration 

the slaves need to wait for a few moments to get a new job for next L. 

�9 Once the jobs for the projected DOS are being carried out, master sends some 

information to all the slaves to finalize (MPI_FINALIZE) themselves, that is, to ask 

them to stop running. 

We have checked out the total time that is required to run this ASR code for a calcu- 

lation on real material using both serial and parallel codes. To calculate each projected 

DOS of NiPt (50-50) alloy the serial computer needs around 18 hrs whereas the parallel 

machine (using 32 processors) reduces the time to only around 48 minutes ! 

3.7 Conc lus ion  

We have presented an augmented space recursion formulation in reciprocal-space. We also 

present a generalization of the tetrahedron method proposed by Jepsen and Andersen 1971 

for inverting the spectral functions to obtain the density of states. This technique will 

be useful for carrying of Brillouin zone integrals for disordered alloys. We have studied 

both a model alloy and NiPt. We have shown that the reciprocal-space calculation gives 

much better result than in real-space. This is because, in reciprocal-space formulation 

we really work with an infinite solids. The alloy NiPt was chosen since it has a sharp 

structure straddling the Fermi energy and therefore is a sensitive test for the accuracy 

of our technique. Finally, in order to accelerate the computation we have developed a 

parallel code (MPI program) feasible to a Beowulf cluster machine. 



Chapter 4 

B l o c k  r e c u r s i o n  and  G r e e n  m a t r i c e s  

4.1 Block recursion 

Augmented space recursion carried out in a minimal basis set representation of the tight- 

binding linear muffin-tin orbitals method (TB-LMTO-ASR) has been proposed earlier 

(Saha et al 1994b, Saha et al 1996) as a technique for the incorporation of the effects 

of configuration fluctuations for random substitutionally disordered alloys. This can be 

achieved without the usual problems of violation of the Herglotz analytic properties of 

the approximated configuration-averaged Green functions for the SchrSdinger equation 

for these random alloys. Although our initial focus was on configuration averages of the 

density of states and spectral functions, recently we have proposed using the TB-LMTO- 

ASR for the study of configuration-averaged optical conductivities (Saha and Mookerjee 

2004b) or coherent and incoherent neutron scattering cross-sections (Alam and Mookerjee 

2004b). These calculations require the full Green matrices in angular momentum space 

and not only their diagonal elements. We propose here the use of a generalization of 

the recursion method of Haydock et al 1972. The block recursion technique had been 

introduced earlier by Godin and Haydock 1988, 1992 in the very different context for 

obtaining the scattering S-matrix for finite scatterers attached to perfect leads. It has been 

discussed in a general context by Nex 1989 and Haydock et al 2004. Earlier, Inoue and 

Ohta 1987 had proposed the use of an orbital symmetrized version of the block recursion 

method for electronic structure calculations. We shall borrow their ideas and set up a 

~ of this chapter has been accepted for publication in : K K Saha and A Mookerjee, J. Phys.: 
Condens. Matter (2004). 
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block recursion in angular momentum space (rather than the lead space, as in Godin and 

Haydock's work) in order to obtain the Green matrices (in angular momentum space) 

directly. Unlike in the earlier works, the application will be to configuration averages in 

random alloys. 

The need to develop the block recursion will become evident when we attempt to 

calculate the response functions in random alloys. Let us, in anticipation, quote here 

the result for the dominant term in the configuration-averaged current-current correlation 

function which will be discussed in the following two chapters (Saha and Mookerjee 2004b). 

This correlation function is directly related to the optical conductivity. We note that the 

expression involves the full Green matrix in angular momentum space and not only its 

diagonal elements. 

The expression for correlation function is 

/B d3k [Jeff(k' zl' << S(Zl, z2) > ---- - -  Tr z.) << G"(k, Zl) >> Jeff(k, Zl, z2)* << GC(k, z2) ~>~] 
z 8 ~  3 

(4.1) 

and the renormalized current term is given by : 

Jeff(k, zl, z2) = <<j(k)>> +2 [~(k, z2)f(z2)j(1)(k) + j(1)(k)f(zl) E(k, Zl)] 

+ E(k, z2) f(z2) j(2)(k) f(zl) E(k,z~) (4.2) 

where 

and 

f(z) = fLU(Z) Af  z 5LL, 

E = g-1 _ G-I  

g is the virtual crystal Green function. The interested readers are referred to the chapter 6 

which derives these expressions in some detail. The main point in setting these equations 

out, is to note that in such calculations one needs the [u11 Green matrix in angular 

momentum space. This is the main motivation for this work. 

The first step in setting up the block recursion procedure is to systematically renumber 

the real-space basis with integers. An example on a square lattice is shown in figure 4.1. 
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Figure 4.1: Systematic discrete numbering of the nearest-neighbour map on a square 

lattice. 

The nearest-neighbour map is now generated by a systematic numbering of the states 

in augmented space as follows : 

(A) Real-space formula t ion  : We start with numbering IR, {0}) as 1, and then re- 

cursively generate the neighbours by acting on the states by S and F. Let us take an 

example of a square lattice : 

1. S acting on I1, {•}) - I1) gives four new neighbours 12, {q)}) . . .  [5, {q)}). The four 

real-space neighbours of I1) are then 12), [3), 14) and 15). 

2. F acting on I1, {qI}) --I1) gives I1, {1}). This we number 16). 

3. S acting on 12, {q)}) _--12) gives: 16, {O}), 17, {~}), I1, {q)}) and 18, {~}). These we 
number 17), 18), I1) and [9). 

4. F acting on 12, {~)}) -12)  gives 12, {2}) - I10) .  

We proceed exactly as above and finally obtain the nearest-neighbour map matrix, the 

nth column of whose ruth row gives the nth neighbour of m. We show below the initial 

part of the nearest-neighbour map for the above example : 

2 3 4 5 6 / 
7 8 1 9 10 
8 11 12 1 13 

�9 , , ,  , , ,  o . . .  , ,  �9 �9 



Chapter 4. Optical properties of compounds and disordered alloys 62 

The equivalences are : 

Augmentedspace element 
Discrete numbering 

Augmented-space element 
Discrete numbering 

1{0} 2{0} 3{0} 4{0} 5{0} 1{1} 6{0} 
1 2 3 4 5 6 7 

=~ 7{0} 8{0} 2{2} 9{0} 10{0} 3{3} 
8 9 10 11 12 13 

(B) Reciproca l - space  formula t ion  : In reciprocal-space the procedure is even simpler, 

since the operators act only on the configuration part of the space. As before, we start 

with numbering Ik, {0}) as 1 and then recursively generate the neighbours by acting on 

the states successively by S and F. Let us take the example of the square lattice : 

1. S acting on 1{0}) -- 11) leaves it unchanged. The four neighbours of 11) are then 

I1), I1), I1) and I1}. 

2. F acting on 1{0}} ----I1> is I{1}}. This we number 12>. 

3. S acting on I{1}> - 1 2 )  gives: 1{2}>, 1{3}>, 1{4}> and 1{5}>. These we number 13>, 

14>, 15> and 16>. 

4. F acting on I{1}} - 1 2 }  is 1{0}> -I1>.  

We proceed as before and obtain the nearest neighbour map matrix We again show 

below the initial part of the nearest-neighbour map in reciprocal-space : 

I 111 21 
3456 1 
7829 I0 
�9 ~ o . . . . . . .  , , ~  . .  

Now the equivalences are : 

Cardinalitysequence =a {0} {1} {2} {3} {4} {5} {6} {7} {8} {1,2} 
Discrete numbering =a 1 2 3 4 5 6 7 8 9 10 
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(C)  T h e  B l o c k  recurs ion  : We now go over to a matrix basis of the form s(I) (~) ,~ t J, LL ] 

where J is the the discrete labelling of the augmented space states and L, L' labels the 

angular momenta. The inner product of such basis is defined by 

~: LL",J ~ J,L"L' ~L' 
J L" 

For a real-space calculations on a lattice with Z nearest-neighbours, we start the 

recursion with 

I)(1) - -  l~iT(1) 6J,1 -}-I~iT(2) 6J, Z+I, 
J, LL' - -  "" LL' "" LL l 

while for a reciprocal-space calculation we start with 

I)(1) ~Iz~f(1) 6j,1 -F ~v(2) 6./,2, 
J, LL' : "" LL' "" LL' 

where 
W(1) = A(AL1/2_____~) ~nT(2) = F(AL 1/2) 

LL' In(ALl)] l /2  (~LL' " ' L L '  [A(AL1)]I/2 6LL,.  (4.3) 

The remaining terms in the basis are recursively obtained from 

m(2) n(2)t 
~ J, LL" ~JL"L' : 

L" 

X T M  d%(n+l) /:t(n+l)f 
J, LL ~-" L" L' 

L" 

E E H J L ,  J'L' '  ~(1) eb(1) 4(1) ~= J~,L"L' - -  E ~L"L' ~J, LL" 
Y' L" L" 

Y~ HJL,J,L,, ~(~) a~(~) ~(~) "~L"L' ~-'L" L' ~ J, LL" 
J' L" L" L" 

Orthogonalization of the basis gives 

~'LL",J ~J',L'"L' = Y~, N~L" A(n) 
J L" j I  L.I  L" 

In matrix notation, where matrices are in angular momentum space, 

(4.4) 

A(") : (N") -1 E E Hj. (4.5) 
J J, 

2 Next, we note that we had started with Jma~ • Lmax orthogonal basis set. The above 

procedure merely gives Jmax basis sets. We still have orthogonality conditions among the 

various columns of '~('~) In order to impose these conditions, consider ~ J, LL'" 

9J, LL' = Y~ ~ HJL,J,L; ~(~) -- ~(~) ~(~) ~'~L"L'" ~ J, LL" 
j I  L" L" L" 
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.A(L') Construct Lmax column vectors ~'JL out of the  Lmax columns of 9 J ,  LL, and set about  

to Gram-Schmidt  orthonormalizing the  set : 

(1) ~ .h(1) 
LJ  : L' l l r  ::::b BI21 : E A~(1) A~(1) ~ J L W L J  

LJ  

(2) = B ~h(1) B oj,(2) LJ  219/LJ -~- 22~LJ  ~ B21 = E 'd'(1)A'(2) "~Jg~ 'gJ  , B22 
LJ 

. . . . . . . . .  0 , . . . . . . . . . .  ~ o .  

n 

~)(n) D w.(k) ~ .h(k) .h(n) 
JL --~ E - ~ n k ~ L J  ~ Snk = L. .~HjLV,  L j  

k=l  LJ  

: E "4(1)~h(1)S~JLWLJ - -  B21 
LJ 

. ~  

n--1 
X -~ r162 _ 2 (k < ?%) ; B 2 n  - :  ~ JL LJ  E Bnk"  
LJ  k----1 

(4.6) 

m(n+t) from ~)jL L and note tha t  Bnk is indeed the  matr ix  B (n+l) We may now construct  ~=J, LL' 

we are looking for. 

The  equations (4.5) and (4.6) show tha t  we may calculate the matrices {A (n), B (n+l)} 

recursively, not ing tha t  B (1) = I and B (~ = 0. In this new basis, the  Hamil tonian is 

block tridiagonal and the  Green matr ix  can be wri t ten as follows : 

G(n) = [ E  I - A (n) - B (n+l)f G ( ~ + n  B (n+l)]-I 
<< G >> = GO). (4.7) 

4.2  M o d e l  c a l c u l a t i o n s  

(A)  M o d e l  o n  a s q u a r e  l a t t i c e  : We shall first apply our methodology to a two-band 

model  on a square lattice with the Hamil tonian  11ooo I I-2.o-o.21 0.0 1.0 PR + ~ E --0.2 --0.5 Tun, 
R R' 

HB ~ 0.1 0.0 --2.0 --0.2 
o.o o.1 n n, --0.2 --0.5 

(4.8) 

The  concentrat ion is taken to be x -- 0.5. 

We have carried out block recursion for N=I0 levels. The termination was carried 

out as suggested earlier by Godin and Haydock 1988, 1992 : we put {A(n),B (n+l)} = 

{A (N), B (N+I)} for n -- N + I,..., Nmax and take G(Nm~x+1) ---- (I/(E - i6)) I. In order to 
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Figure 4.2: The real and imaginary parts of the Green matrix for a 2 • 2 Hamiltonian 

model. The full lines refer to (]11, the dashed-dotted line to (]22 and dashed lines to (]12. 

get a smooth density of states we had taken 5 = 0.01 and Nmax ---- 10 4. The elements of 

the Green matrix are shown in figure 4.2. The imaginary part of the diagonal elements 

give the projected density of states. Herglotz properties of the diagonal parts give rise to 

a positive definite density of states. The off-diagonal part is relatively small and is not 

Herglotz. The projected density of states is symmetric, as is the imaginary part of the 

off-diagonal element. The real parts of the matrix elements are also shown. These are 

related to the imaginary parts by the Kramers-KrSnig relation. 

(B) T h e  s-d m o d e l  of  a t r a n s i t i o n - n o b l e  m e t a l  a l loy �9 Levin and Ehrenreich 1971, 

and Gelatt and Ehrenreich 1974 have introduced a simple two band model for transition- 

noble metal alloys. Physical effects like charge transfer between constituents will usually 

differ for the s-p conduction bands on one hand and the relatively narrow d bands on the 

other. Their model includes the conduction bands described together as a single band 

and the set of d bands also described as a single band and their hybridization. The model 

also takes into account the large widths of the conduction bands and the relatively narrow 

widths of the d bands. The following Hamiltonian has many (but not all) of the essential 

features : 

0) R ,49, 
R ")/ ~d R R'  0 t d 

The dominant disorder is taken to be in the terms es and Cd. The hybridization is taken 
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Figure 4.3: The real and imaginary parts of the Green matrix for the s-d model on a fcc 

lattice. The calculations were done by a real-space block recursion. The full lines refer to 

G11, the dashed-dotted line to G22 and dashed lines to (]12. 

between states at the same site only and the hopping terms are related by ts = (~td. The 

sites R vary over the sites of a face-centered cubic lattice. As a model case we have taken 

the parameters shown in the following table : 

Table4.1:Parameters~rourcalculation~rA50B50alloyona~clattice. 

Constitue~ es ~d ~ ~ td 

A 1.5 1.5 0.2 4.0 -0.5 
B 0.0 0.0 0.2 4.0 -0.5 

(i) Ca lcu la t ions  us ing  real-space block recurs ion : Figure 4.3 shows the real and 

imaginary parts of the Green matrix. These calculation are carried out through a real- 

space block recursion technique. In general ~ the qualitative features for the diagonal ele- 

ments are similar to our square lattice model. The main difference is that on a fcc lattice 

the partial density of states, related to the imaginary part of the diagonal elements of 

the Green matrix, are no longer symmetric about the band centre. Consequently, the 

behaviour of the off-diagonal element is quite different. The total density of states is 

given by 

n(E) = (1/Tr) Im (Gss(E - i5) + 5Gdd(E - -  i5)). 
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If, for example, the number of electrons in the constituents is 5 per atom per spin for A 

and 5.5 per atom per spin for B, the position of the Fermi energy is given by 

/E_~ dEn(E) = <ne> = XnA+(I--x) nB = 5.25 

where nA and nB are the number of valence electrons of A and B type of atom. 

(ii) Calculations using reciprocal-space block recursion : We have carried out the 

block recursion in reciprocal-space for the s-d model. The Green matrix in reciprocal-space 

G(k, E) is the factor that arises in our earlier expression for the configuration-averaged 

current-current correlation function. Its diagonal matrix element is related to the spectral 

functions for the different bands. In figure 4.4 we show the spectral functions along a given 

direction F - X  in reciprocal-space. The imaginary part of the off-diagonal matrix element 

is also shown in the figure. We note that the off-diagonal part of the Green matrix has 

antisymmetric structure in its peaks, while the diagonal matrix elements are positive (as 

they represent spectral functions). 

Figure 4.5 shows the Green matrix elements calculated starting from the G(k, E) 

and carrying out a reciprocal-space integration developed by us (Saha et al 2004) as 

a generalization of the tetrahedron method proposed by Jepsen and Andersen 1971 for 

crystalline systems. The close comparison between the figures 4.3 and 4.5 gives strong 

support for the accuracy of the reciprocal-space recursion followed by the generalized 

tetrahedron integration developed in the previous chapter. 
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4.3 Conc lus ion  

In this chapter we have described a block recursion in augmented space suitable for cal- 

culations of the Green matrices. The recursion is set up both with real-space augmented 

by the configuration space of the alloy and the reciprocal-space augmented with the con- 

figuration space. For the latter case we have coupled it with a Brillouin zone integration 

scheme which is a generalization of the tetrahedron methQd developed earlier for crys- 

talline systems. The Green matrices are essential for the calculation of the response 

functions and effective current terms which are related to the self-energy matrices. We 

propose to use these techniques in our next applications. 



Chapter  5 

Optical properties of ordered compounds 

5.1 Introduct ion  

The object of our present study is to derive an expression for the optical conductivity as a 

convolution of the energy-resolved joint density of states (JDOS) and an energy-frequency 

dependent transition rate. The need is to go beyond the usual reciprocal-space based for- 

mulations and obtain an expression which we can immediately generalize for disordered 

systems. This would require labelling states by energy and the angular momentum labels 

(6, m) alone. Once we derive this expression we shall find a representation for the optical 

conductivity in the minimal basis set of the TB-LMTO. The generalization to disordered 

systems will be carried out through the ASR introduced earlier for the study of electronic 

properties of disordered systems (Mookerjee 1973, Ghosh et al 1999). The ASR carries 

out the configuration averaging essential to the description of properties of disordered sys- 

tems, going beyond the usual mean-field approaches and taking into account configuration 

fluctuations. The input into the ASR method includes the Hamiltonian parameters of the 

pure constituents, as the starting point of the local spin-density approximation (LSDA) 

iterations for the alloy. It also includes the information about the transition rates of the 

pure constituents, expressed as functions of the initial and final state energies. The aim 

of this work is to reformulate the reciprocal-space representation of the transition rate 

and re-express it in the energy-frequency labelled representation for the pure constituents. 

~ contents of this chapter has been published in two papers : (1) K K Saha, T Saha-Dasgupta, 
A Mookerjee, S Saha and T P Sinha, J. Phys.: Condens. Matter 14 3849 (2002) and (2) B Ganguli, K 
K Saha, A Mookerjee, Physica B 348 382 (2004). 

69 
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Only when we are confident that  this works can we proceed with the full calculations for 

the disordered alloy. This work is an attempt to verify our formulation for a series of 

alkaline-earth titanates in the paraelectric phase and the defect-chalcopyrite ZnIn2Te4, 

on which extensive theoretical and experimental data of optical properties are available 

for comparison. 

5.2 Methodology 

In recent years a number of methods have been proposed for calculating optical properties 

within the framework of the LMTO (Uspenski et al 1983, Alouani et al 1986, Alouani 

et al 1988, Zemach et al 1989a, Zemach et al 1989b, Hobbs et al 1995) for both metals 

and semiconductors. We shall present here a gauge-independent formalism, following the 

ideas of Hobbs et al 1995. Since our final' aim is to use the ASR method (Mookerjee 

1973, Kaplan and Gray 1977, Saha et al 1996, Dasgupta et al 1997, Ghosh et al 1999) 

to study the  optical properties of random systems, we shall modify the reciprocal-space 

formulation and obtain an expression in which all states are labelled by their energy and 

the optical conductivity is expressed as a convolution of the energy-resolved JDOS and 

an energy-frequency dependent transition matrix. This formulation will then be directly 

generalized within the ASR. 

The Hamiltonian describing the effect of a radiation field on the electronic states of a 

solid is given by 

g = ~ ~ P i +  cA(r i ,  t) + V ( r i )  +e(I)(ri, t) . 
i----1 

Here e is the magnitude of electronic charge, me the electronic mass, c is the velocity 

of light and h is the Planck's constant. A(ri ,  t) and (I)(ri, t) are the vector and scalar 

potentials seen by the ith electron because of the radiation field. There are N electrons 

labelled by i. The potential V(ri) experienced by the electrons is expressed as an effective 

independent electron approximation within the LDA of the density functional theory 

(DFT). For not-too-large external optical fields, neglecting terms of the order of IAI 2, the 

Hamiltonian reduces to 
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N { 1 2 1 } 
H = E ~-~m Pi + v ( r i )  + - A ( r i ,  t ) . j~ . (5.1) 

i=1  C 

Here j~ = (e/m) p~ is the current operator. We work in the Coulomb gauge where 

V .  A(r~, t) = 0 and q~(ri, t) = 0, so that  the electric field 

E ( r ~ ,  t)  - aA(ri, t) 
Ot 

In choosing the above equation we have ignored the response of the system. The 

local electric field is made up of the external field due to the incident radiation as well 

as the internal field due to the polarization of the medium. Such local field corrections 

are important  for insulators. We intend, as is customary, to introduce the local filed 

corrections as well as corrections due to the Coulomb hole in our final GW calculations, 

for which the single-particle picture will form the zeroth starting point. 

The Kubo formula then relates the linear current response to the radiation field : 

<j,(t)) = dr' X.~(t-  t')A~(t'). 
o o  

The generalized susceptibility is given by 

x.,,(~) = ~o(7-) <r162 

where ~- = t - t ' and O(~-) is the Heaviside step function: 

1 if~- > 0 
O('T) = 0 if T < O. 

]r is the ground state of the unperturbed system, that  is, the solid in the absence 

of the radiation field. In the absence of the radiation field, there is no photocurrent, i.e. 

(r162 -- 0. The fluctuation-dissipation theorem relates the imaginary part of the 

generalized susceptibility to the correlation function as follows : 

X~v(w). = 21 (1 - e  - ~ )  S~v(w) (5.2) 
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where 
1 

kBT 

where kB is the Boltzmann constant and T the temperature and 

F X~(w)  ---- Im d t e  ~zr X~(T)  Z=w+~O + 
o o  

and 

/2 S,v(w) = Im dt e ~" {r J~,(0)lr z=w+ ~0+. (5.3) 

An expression for the correlation function can be obtained via the Kubo-Greenwood 

expression: 

7F 
S(w) = ~ y~ ~ ~ ( r  lCf)(r lr 5(Ef - E~ - hw). (5.4) 

We have assumed isotropy of the response so that the tensor S~v is diagonal and 
1 we have defined S(w) as the direction averaged quantity ~ ~,S~(w). The I{r are 

the occupied 'initial' single-electronic states in the ground state while l{r are the 

unoccupied single-electron 'final' excited states in the LDA description. 

The imaginary part of the dielectric function is related to the above : 

1 ~2(W)- ~2w~S(w). (5.5) 

We may obtain the real part of the dielectric function Q(w) from a Kramers-Kr5nig 

relationship, 
2 f~ (w' - w) c2(w') 

e l (W)- -  1 + - J 0  d J .  (5.6) 7]" ~ l  2 __ 022 

For crystalline semiconductors the equation (5.4) may be rewritten as follows : 

s(~) = ~ ~ z ~ I(%,kl J I%k)l 2 ~ (Ey(k) - Ej(k)  - h~) .  (5.7) 

Here j and j~ refer to band labels : j for the occupied valence bands and j / t h e  unoccupied 

conduction bands at T=0 K. The k is the quantum label associated with the Bloch 

theorem. For disordered materials, the Bloch theorem fails and the expression (5.7) can 

no longer be used. Our first aim will be to obtain an alternative expression where the 



Chapter 5. Optical property of ordered compounds 73 

quantum states are directly labelled by energy and frequency, rather than by the 'band' 

and 'crystal momentum' indices. To this end, let us examine the following expressions �9 

n(E) = ~. /BZ ~ a  d3k 5(Ej(k) - E) (5.8) 
3 

oct ~no~ [ dak 5(Ej(k) - E) 5(Ej,(k) - E -  ha;). (5.9) 

In the equation (5.8), the right hand side picks up a factor of 1 whenever a quantum 

state, labelled by {k, j} falls in the range E, E+hE. The left-hand side, therefore, is the 

density of states arising from the bands labelled j. 

In the equation (5.9), the right-hand side picks up a factor of 1 whenever a quantum 

state in the filled bands labelled j falls in the range E, E+hE and simultaneously a 

quantum state in the unfilled bands labelled j' falls in the range E+w, E+w+hE. The 

left-hand side is then the energy-resolved joint density of states : 

J(E,  co) = n~(E) nc(E + ha;). (5.10) 

We shall define the energy-frequency labelled transition rate as 

~. z ~ TJJ'(k) 5(Ej(k) - E) 5(Ej,(k) - E - liw) 
3 T(E,w)  = 

fS d3k 5(Ej(k) - E)  5 ( E j , ( k )  - E -  hw) 

(5.11) 

where 
T jj'(k) = ~ (~j'k[ j ,  [(I)jk} 2.  

/z 

The expression for S(w) from equation (5.7) then becomes 

S(w) = (7r/3) / dE T(E,w) g(E,w). (5.12) 

Many earlier workers argued that the transition matrix element is weakly dependent 

on both E and w. They then assumed it to be constant, To, and obtained a simple 

expression for the correlation function : 

So(w) = (7r/3) T o /  dE J(E,w). (5.13) 
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We shall investigate the validity of this approximation for the systems under study in 

this work. Let us first get an expression for the equation (5.12) within the TB-LMTO 

formalism of Andersen 1975 and Skriver 1984: The basis of the LMTO starts from the 

minimal muffin-tin orbital basis set of a KKR formalism and then linearizes it by ex- 

panding around a 'nodal' energy point E~ . The wave function is then expanded in this 

basis: 

(I)jk(r) -- c~ka r + E E  aa' "a' 

where L is the composite angular momentum index (6, m), j is the band index and 

labels the atom in the unit cell. Also, 

~ r ot r ~ Yn(r) r  

r ---- z ~ YL(+) Or 
OE 

~' V~L ~' ~V~L" hLL,(k ) = ( C ~ -  E~,~) 5LL,5~, + ~,Lc,(k) �9 

C~, and A~, are TB-LMTO potential parameters and S~,~; (k) is the structure matrix. 

These terms are standard for the LMTO formulation and the reader is referred to the 

citation (Andersen 1975) for greater detail. The TB-LMTO secular equation provides the 

expansion coefficients dnk~ via 

- ~ , ~ ,  = 0 .  ( 5 . 1 4 )  as/ (Eu~ EJk) (~aa'] "k E E  [hLL,(k) + ~ 
L' a'  

We may now immediately write an expression for the matrix element of the current 

operator as in equation (5.11) : 

((i)j,k(r) I j i(i)jk(r)> = ~ ~ ~,k ~ k  / <r j ICaL(r)> 
LL' o~ 

+ ( E  j~ - E S )  <r j Ir 

+ ( E  j'~ - ES,) (r j Ir 

+ (E yk - E~%) (E j'k - E~%,) <r j Ir (5.15) 

We shall now obtain expressions for the right-hand terms by noting the following : 

dr e H] 
j = e dt - ~h[r' 
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O~ O~ O~ "0~ Hr ) = E.% r  H$~L(r ) ---- r  + E ~  r  (5.16) 

We can write 

r = (27r/3) I/2 r [(]11,=-i- Yl,l) i + ~(Y1,-I + YI,1) j + 21/2yi,o l~]. 

Using the above two equations we get 

/ ~ * = ~t-~' a fo ~ r  r g  r d3r E~ Fnn, r r  r3dr (5.17) 

where so is the atomic sphere radius of the a t h  a tom in the unit  cell and FLL, is a 

combinat ion of Gaunt  coefficients Hobbs et al 1995 : 

F LL, = ~ [ [ f 2  m''-l'm (um',l,m'~i_[_ ~ [(um',-1,m (Tm',l,m~ (um',O,m 

In order to obta in  f r H r  r d3r. we note tha t  H = (h2/2me)V 2 + V(r)  

so using the Green's second identi ty we can obtain  

/ o *  {fo 
r H r r d3r = Z~-t'FLL , Ev%, r r 

+ (h~/2me)s~ r r  ( D . ~ , -  D . ~ -  1)}. (5.18) 

O/ D ~  are the logari thmic derivatives of r  at r = s~ and are obtained as parameters  in 

the TB-LMTO routines. We define the following integrals : 

0 8c~ OL 

fO Og ~ 0~ ~" r162 ) r3dr = J~, 

0 "C~ 'O~ 

2 2 a ~ - 1) = /:)t~ Then the matr ix  elements for and use the nota t ion  (h /2me)s~(D~t- Due, 

the current operator  become 

ZL L ' , ~  ~ -  

ZL(2) 
L',# = 

J ,  I C g L ( r ) )  - -  - -  

- -  - -  

~-s 1 

~ - -  ~1  - -  i 

a -- a "a 8 a 

h 
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Zt-- t ' -  1 
�9 7-(3) o~ "oc oc [ ] 

= . __ __ __ a a ~ut,(Sa) 

•L(4) a "o~ "a  
L',. = (r Jg Ir 

~s 1 I o_ o o _ ] 

The transition term TJJ' (k) has to be written in terms of the normalized wave function. 

The normalizing factors for the wave functions are obtained from 

where 

= f d3r ~;k(r) ~jk(r) 

= EEI ; I {J 2 
L c~ 

: ; = r r2dr S ~ ) =  r  

Using the secular equation (5.14), the expression for the transition term becomes 

T j~ (k) ~. .,', - 1 / 2  ~ 7_j'k , , jk  fq - (1 )a  a ,7-(2)a N[N~ ) ~ ~ Z..~L'.~L. ~nn', .  + ( Ejk - E~e) ~LL',. 
# LL'  

+ (EJ'k m s  ~q-(a)a (EJk Ki?a "~{l:~j'k c~ hq-(4)c~ "~ 2 
-- J_jv~,]_~LL,,# ~- -- ~_~v~]~_~ -- Ev~,]~LL,,~ ] �9 

(5.20) 

r2dr. 

(5.21) 

The equation (5.12) provides an expression for the optical conductivity where both the 

transition matrix and the energy-resolved JDOS are expressed as functions of energy and 

frequency. As we shall show in a subsequent work, that within the ASR formalism this is 

the form in which the information about the constituents are input, and the configuration- 

averaged correlation function for the alloy may be expressed as 

<< S(w) >> = (~/3) / dE Te~(E,w) << J(E,w) >> (5.22) 

where 

<< J(E, w) >> = << nv(E) >><< nc(E + w) >> [1 +ACE,  w ) << J(E, w) >>] 
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and 

Te~(E,w) : << T(E,w) >~> + 5T (E,w,E(E,w)) 

where E(E, w) is the self-energy due to disorder scattering and A(E, w) the corresponding 

vertex correction. 

5.3 Appl icat ion to perovskite  alkaline-earth t i tanates 

Perovskite structured titanate ferroelectric compound has been, to date, one of the most 

extensively investigated materials. They are extremely interesting from the viewpoint 

of solid-state theoreticians because their structures are a lot simpler than those of any 

other ferroelectric material known and, therefore, they prove to be rather simple systems 

to study in order to better understand the ferroelectric phenomenon. The titanates are 

very easily prepared as polycrystalline ceramics; they are chemically and mechanically 

fairly stable and they exhibit a paraelectric-to-ferroelectric phase transition at or above 

room temperature. Continued interest in these compounds has led to a wide variety 

of theoretical and experimental work, specially on lattice vibrations. A less common 

approach has been those based on electronic structure calculations (Castet-Mejean 1986). 

Michel-Calendini and Mesnard 1971, 1973 have reported the band structure of BaTiO3 

within a linear combination of atomic orbitals (LCAO) method with empirical off-diagonal 

integrals. The pioneering work on SrTiO3 was that of Kahn and Leyendeker 1964. This 

was followed by an augmented plane wave (APW) calculation by Mattheis 1972 and 

a self-consistent tight-binding calculation by Soules et al 1972. However, Battaye et 

al 1976 have compared experimental valence band spectra with these early theoretical 

predictions and have concluded that the agreement was not satisfactory. Pertosa and 

Michel-Calendini 1978 carried out a modified tight-binding calculation on BaTiO3 and 

SrTiO3 and compared their results with X-ray photoelectron spectra. These authors 

introduced inner orbital interactions. Perkins and Winter 1983 have carried out LCAO 

calculations on the band structure of SrTiO3. There have been several all-electron, full- 

potential linearized augmented plane waves (FP-LAPW) studies of the titanates in recent 

times (Cohen and Krakauer 1990, 1992, Singh and Boyer 1992). In addition, studies based 

on ultrasoft-pseudopotential local density approximation (LDA) on perovskites have been 
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Figure 5.1: (a) Cubic unit cell for a perovskite ABC3. (b) The Brilluoin zone for the 
cubic phase. 

carried out by King-Smith and Vanderbilt 1992, 1994. In comparison, electronic structure 

calculations on CaTiO3 have been fewer. Ueda et al 1998, 1999 have used the first- 

principles tight-binding method to study CaTiO3 . 

We shall show that for all three compounds the transition rate, defined by us, is 

strongly energy and frequency dependent, i.e. it depends upon the energy of both the 

initial and the final states. We shall compare the theoretical results with experiment. 

5.3.1 Electronic structure calculations 

The primitive cell for the ideal perovskite structure ABC3 is illustrated in figure 5.1(a). 

For the class of compounds we are interested in, the generic chemical formula is ABO3. 

A is a monovalent or divalent cation, B is a t~travalent or pentavalent metal. In the 

paraelectric phase there is full cubic symmetry. It can be thought of as lattice of corner- 

sharing oxygen octahedra with interpenetrating simple cubic lattices of A and B. The B 

cations sit at the centres of the octahedral O cages, while the A metal ions sit in the 

12-fold coordinated sites between the octahedra. In our case the body-centre position is 

occupied by the Ti atom, the edges by alkaline-earth atoms and the face centres by O 

atoms. The space group is O k and the corresponding Brilluoin zone is shown in figure 5.1 

(b). Both the A and B atoms are situated at sites with full cubic (On) point symmetry, 

while the O atoms have tetragonal (D4a) symmetry. 
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Figure 5.2: Band structures of CaTiO3, SrTiO3 and BaTiO3 (No scissors operation has 

been carried out in these calculations). 

The electronic configurations of the alkaline-earth atoms are shown in table 5.1. 

Since we wish to take into account the shallow core states, to include the transitions 

from these to the conduction band at large enough optical frequencies, the energy range 

is about 40 eV (3 Ryd.) and the single-panel LMTO cannot be made to be accurate over 

this range, we have carried out a two-panel calculation, with the Eva~ lying in the lower 

energy range in one panel and in the upper energy range in the other. The minimal basis 

sets used in the two panels are shown in table 5.2. 

Table 5.1: Electronic configurations of the alkaline-earth atoms. 

A t o m  Deep Core  Shal low Core Valence Unoccup ied  

C a  is  2 2s 2 2p a 3s 2 3p 6 - 4s 2 3d 4p 

Sr i s  2 2s 2 2p 6 3s 2 3p 6 3d I~ 4s 2 4p 6 5s 2 4d 5p 4f 

Ba  l s  2 2s 2 2p 6 3s 2 3p 6 3d I~ 4s 2 4p 6 4d I~ 5s 2 5p 6 6s 2 5d 6p 4f 

Ti  l s  2 2s 2 2p 6 3s 2 3p 6 - 3d 2 4s 2 4p 

O Is  2 - 2s 2 2p 4 3s 3d 
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Table 5.2: The minimal basis sets used in the lower and upper energy panels. 

CaTiO3 

Lower Panel Ca 4s 4p 3d Ti 4s 4p 3d O 2s 2p (3d) 

Upper Panel Ca 4s 4p 3d Ti 4s 4p 3d O 3s 2p (3d) 

SrTiO3 

Lower Panel Sr 5s 4p 4d (4f) Ti 4s 4p 3d O 2s 2p (3d) 

Upper Panel Sr 5s 5p 4d (4f) Ti 4s 4p 3d O 3s 2p (3d) 

BaTiO3 

Lower Panel Ba 6s 5p 5d (4f) Ti 4s 4p 3d O 2s 2p (3d) 

Upper Panel Ba 6s 6p 3d (4f) Ti 4s 4p 3d O 3s 2p (3d) 

The states in parentheses are unfilled states which have been downfolded in our cal- 

culations. The figure 5.2 shows the band structure of the three titanates. 

Let us first look at the leftmost figure for CaTiO3 . The Ca 3p core level lies around 

-27 eV and not shown in this figure. The narrow band around -20 eV is the O 2s band. 

The nine valence bands just below the Fermi level are derived from hybridized Ti 4s and 

O 2p. An indirect band-gap appears between the valence band top at the R point and the 

conduction band minimum at the F point. CaTiO3 shows an indirect band-gap (F-R) of 
1.6 eV, in the absence of the scissors operation. The experimentally reported indirect gap 

is 3.5 eV (Ueda et al 1998). This discrepancy is characteristic of the LDA upon which 

the TB-LMTO is based. In the conduction band region we have bands originating from 

(in ascending order of energy) Ti 3d-t2g triplet, a singlet arising from Ca 4s and a doublet 

from Ti 3d-eg . Then comes the bands which originate from the Ca 3d-eg doublet and 

the Ca 3d-t2g triplet. Finally we have the Ti 4p and Ca 4p based bands and finally the 

band based on Ca 4s. We note that for CaTiO3 , Ca and Ti 3d based bands overlap and 

hybridize in the conduction region. 

For SrTiO3, in the lower panel, the Sr 4p level now sits almost atop the O 2s band, 

giving rise to a rather broad (as compared to CaTiO3) s-p hybridized band just below 

-20 eV. The subsequent analysis of the bands is rather similar to CaTiO3. However, the 

band-gap is now direct and ~ 1.4 eV. Earlier band structure calculations of Mo et al 1999 
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Figure 5.3: Densities of states for the three perovskite titanates. 

and Kimura et al 1995 yield indirect band-gaps of ~ 1.45 eV and ~ 1.79 eV respectively. 

The experimental direct band-gap is around 3.2 eV. 

For BaTiO3, in the lower panel, the Ba 5p shallow core level now crosses and lies 

above the O 2s band. The band-gap is direct and ~ 1.2 eV. The band structure is almost 

identical to the pseudopotential calculations of King-Smith and Vanderbilt 1992, 1994, 

whose band-gap was also direct and ~ 1.8 eV. The experimental band gap turns out to 

be ~ 3.2 eV (Wemple 1970). 

For all three compounds, our calculations show a characteristic flatness of the lowest 

conduction band along F to X. This agrees with earlier works of Cardona 1965, Mattheis 
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1972, Harrison 1989, Wolfram and Ellialtioglu 1977, 1982 and King-Smith and Vanderbilt 

1992, 1994. This observed flatness is related to certain unusual features in the den- 

sity of states and optical conductivity, which appear to be characteristic of pseudo-two- 

dimensional systems. 

Figure 6.3 shows the densities of states for the three titanates. The densities of states 

reflect the detailed band structure that we have described above. Earlier works on the 

density of states were based on different methods. Michel-Calendini and Mesnard 1971, 

1973 and Pertosa and Michel-Calendini 1978 have used parameterized tight-binding and 

adjusted LCAO based methods for BaTiO3 . Their density of states is in agreement 

with ours, with the band-gap difference characteristic of LSDA methods like the TB- 

LMTO. Similarly, Mattheis 1972 used the LCAO and Perkins and Winter 1983 used the 

extended Hiikel basis for SrTiO3. Again their band structures and densities of states are 

in agreement with ours, with the exception of the band-gap. Even earlier works on SrTiO3 

by Zook and Casselman 1975 and Soules et al 1972 also show reasonable agreement. For 

CaTiO3 we may compare our results with those of Ueda et al 1998, which agree reasonably 

well with our results. 

5.3.2 Optical properties 

In order to compute the transition rates as given in equation (5.11) one must perform 

integration over Brillouin zone, which we have done using tetrahedron method. In this 

method, the zone is divided into tetrahedra of equal volume (although this is not necessary 

condition), the mesh of k-points defining the corners of each tetrahedron. The interpolated 

function is continuous at the boundaries of the tetrahedra and the irreducible Brillouin 

zone is completely divided into tetrahedra. The result of the interpolation is that the 

integrand depends only on the corner energies for a given energy band and the volume of 

the tetrahedra but not on their shape. 

Figure 6.4 displays the transition rates T(E, w) for the three titanates, shown here 

as functions of the initial energy of the excited electron and the incident photon energy 

(frequency). It is clear from the figure that the transition rate is strongly dependent on 

the energy-frequency variables for all the three compounds. The usual assumption of a 
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Figure 5.4: Transition rates for the three perovskite titanates shown as functions of initial 

energies and incident photon energies. 

transition matrix weakly dependent on energy and frequency is certainly not valid in any 

of the three cases Saha et al 2000a-c. 

In figure 5.5 we compare the imaginary part of the dielectric function with the scaled 

JDOS/~ 2. If the transition rate were independent of energy and frequency, they should be 

the same. The behaviours of the two are similar, but the relative weights of the structures 

across the frequency range are clear indications of the energy-frequency dependence of the 

transition rates. 

CaTiO3 : The effect of the energy-frequency dependence of the transition rate has a 

large effect on the optical properties of CaTiO3. If we compare the results reported by 
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Figure 5.5: Comparison of the calculated imaginary part of the dielectric function (c2) 

(left), for the three perovskite titanates, with the same function calculated considering 
transition rate is constant (right). 

Saha et al 2000c with our figure 5.6, we note that  although in the earlier work the joint 

density of states does reproduce the peaks at lower-frequencies, the relative heights are 

not replicated. Looking at the lower panel of the figure, we may assign the peak at 4.5 eV 

to the transitions : O 2p --+ Ti 3d-t2~ at the R and X points. The next and highest peak 

arises because of the nearby two unresolved peaks due to the transitions : O 2p --~ Ca 4s 

at the M point (at 6.3 eV) and O 2p --* Ca 3d-% at the M point (at 6.8 eV). The third 

peak at 7.5 eV may be assigned to the transitions : O 2p --* Ti 3d-t2g at the R point and 

O 2p --+ Ca 3d-% at the X point. At higher frequencies, the theory does not tally well 

with experiment. The peak at 10 eV is not reproduced except as a shoulder. The real part 
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of the dielectric function Q (w) is obtained by a Kramers-Kr5nig transformation from the 

imaginary part. This is shown in the top panel of figure 5.6. The discrepancies at high 

frequencies could be due to the fact that in the scissors type approach we have provided 

a rigid shift to the conduction bands. In a full fiedged many-body GW technique, which 

is our ultimate aim to produce, the shift due to the self-energy will turn out to be energy 

(frequency) dependent. 

SrTiOa : Let us now examine the figure 5.7. As in the case of CaTiO3, here too, the 

effect of energy-frequency dependence of the transition rate leads to the correct relative 

heights of the peaks in c2(w) being reported. The shoulder peak at around 4 eV may be 

attributed to the transitions O 2p at --+ Ti 3d-t2g and O 2p --+ Ti 3d e 9 both at the F 

point. The high peak at 5 eV is due to the O 2p -+ Ti 3d-eg at the F point. A third 

shoulder peak at 6 eV is due to the transition O 2p --+ Ti 3d-eg, also at the F point. As 

in the case of CaTiO3, the structure in the high-frequency part has both peaks lower and 

shifted to higher frequencies. The cause is the same as discussed above. 

BaTiO3 : Lastly, let us look at figures 5.6-5.8. If we compare the shape of the imaginary 
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part of the dielectric function c2(w) obtained by our accurate estimate of the transition 

rate with that of Saha et al 2000c, we note that agreement with experiment of Bs et 

al 1978 is much better when we take the energy-frequency dependences of the transition 

matrix into account. The relative weights of the low-frequency peaks, at 3.8 and 5 eV are 

correctly reproduced here. The lower peak is attributed to the transition from the O 2p to 

the Ti 3d-t2g band and from the O 2p to the Ti 3d-eg band both at the F points. The next 

higher peak is there because of the transition from the O 2p to the Ti 3d-eg band at the F 

point. Our present study also indicates a peak around I0 eV, and the features at higher 

frequencies follow the experimental results closely, although the amplitude seems to have 

been underestimated as compared to the low-frequency results. In all cases, although 

the lower-frequency part is much better reproduced, the high-frequency structures in the 

theoretical result are shifted upwards. 

As before, we argue that this is probably an artifact of the rigid shift of the scissors- 

type approach. A energy-frequency dependent self-energy of the type given by the GW 

method should provide the necessary correction. In addition, the wrong heights at higher 
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frequencies could also arise from the fact that we have neglected transitions to some of the 

higher-energy conduction bands. A more complete, perhaps a three panel calculation at 

higher energies, should correct this. Alternatively, we could use the higher-order NMTOs 

(Andersen and Saha-Dasgupta 2000), since they span a much larger energy range. 

5.4 Application to the defect-chalcopyrite ZnIn2Te4 

The ternary semiconducting compounds of the types AIrB~I*cv4* and AIIB~I ICf  I have 

been widely investigated because of their potential applications in electro-optic, optoelec- 

tronic, and nonlinear optical devices (Georgobiani et al 1985, Schmid et al 1993, Nelson 

et al 1994, Marin et al 1998, Rincon et al 1998, Wasim et al 1998, Matsumoto et al 

1999, Rincon et al 2000, Ozaki and Adachi 2001, Rincon 2002, Rincon et al 2oo3). 
Most of these compounds have the ordered defect-chalcopyrite (space group = o024) or 

D2D ) structures (Madelung 1985, Hahn et al 1995). Detailed stanite (space group = 11 

experimental studies of physical properties of ZnIn2Te4 (Matsumoto et al 1999, Ozaki 

and Adachi 2001) and CuInaTes, CuGaaTe5 and CuInaSe5 (Schmid et al 1993, Marin et 
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al 1998, Nelson et al 1994, Wasim et al 1998, Rincon et al 2000, Rincon 2002, Rincon 

et al 2003) have appeared in literatures in recent times. The technological importance of 

these compounds have arisen due to the fact that these materials are expected to play an 

important role in the optimization of the efficiency of solar cells (Yang et al 1994). 

In the defect-chalcopyrite family ZnIn2Te4 is known to have an ideal chalcopyrite 

structure, i.e. its lattice parameters are simply given by c~ = 13 = a/4, ~/ = c/8, and 

c = 2a, as shown in figure 5.9. Although the material has been in the subject of many 

research efforts, many fundamental properties have not been sufficiently evaluated or are 

even unknown. So our aim is to investigate the electronic and optical properties of this 

system from a first-principles NMTO based calculations. 

Figure 5.9: Crystal structure of defect-chalcopyrite-type semiconductor Znln2Te4. We 

show the orthorhombic primitive cell with two molecules per cell. 

The reason of choosing this system is that, it is not only important for its applications 



Chapter 5. Optical property of ordered compounds 89 

in technology, but is also of academic interest. This is because this could permit us to 

understand the role that  arrays of vacancies or impurities play in influencing their crystal 

structure, electrical and optical properties. The academic importance of its study is also 

associated with the study of nano-materials. There is growing interest in the study of 

defect- and nano-structures (Myers et al 1992, Domain and Becquart 2001). One of the 

experimental methods for the preparation of nano-structures is to fill in the structural 

voids in a host compound with atoms of a given substance. These structural voids could 

either be local void clusters or even tubular voids. The host compound helps to form 

a matrix in which these nano-structures stabilize. We shall first try to understand the 

properties of the host material and in a subsequent work, we shall extend the present 

work to include inserted nano-structures within the host. 

Recently Matsumoto et al 1999 and Ozaki and Adachi 2001 have carried out a detailed 

experimental and theoretical study of optical properties of amorphous and crystalline 

ZnIn2Te4. There are few other experimental measurements (Manca et al 1974, Neumann 

et al 1990a, Neumann et al 1990b, Manca et al 1993) on the compound also, but there 

does not seem to have been any first principles calculations for the electronic structure 

and optical properties of this material. The band structure calculations by empirical 

parameterized tight-binding methods has been carried out for ZnIn2Te4 by Meloni et 

al 1976 and Ozaki and Adachi 2001. These calculations required fitted parameters. The 

actual crystal structures also seem to have been simplified. Meloni et al 1976 have assumed 

a pseudo-cubic (space group = Vdl), rather than the defect-chalcopyrite structure. 

The X-ray diffraction studies by Matsumoto et al 1999 and Ozaki and Adachi 2001 

indicate a structure for this compound as shown in figure 5.9. Their crystal structure 

determinations agree with the structure studies of Hahn et al 1995. An orthorhombic 

unit cell contains two molecular units. It is formed by stacking two cubic units of the 

defect-chalcopyrite structure on top of each other and then sliding the top cube along the 

(110) direction with respect to the bottom a distance equal to half the diagonal. This 

produces an anti-phase-like boundary between the two cubic cells. There are two Zn, four 

In and eight Te atoms in the unit cell, together with two vacancies. The table 5.3 gives 

the coordinates of the inequivalent atoms in the unit cell. Because of the vacancies, this 

structure does not have the full symmetry of a chalcopyrite structure (I42d). The space 



Chapter 5. Optical properties of compounds and disordered alloys 90 

Table 5.3: Positions within the unit cell of atomic basis, including the empty spheres to 

take into account the vacancies within the structure. 

Atom type Positions Atom type Positions 

Znl a/2 0 c/4 Tel -a/4 a/4 c/8 
Zn2 0 a/2 3c/4 Te2 a/4 a/4 3c/8 
Inl a/2 a/2 0 Te3 a/4 -a/4 c/8 
In2 0 a/2 a/2 Te4 -a/4 -a/4 3c/8 
In3 0 0 c/2 Te5 a/4 a/4 5c/8 
In4 a/2 0 3c/4 Te6 -a/4 a/4 7c/8 

E1 0 0 0 Te7 -a/4 -a/4 5c/8 

E2 a/2 a/2 c/2 Te8 a/4 -a/4 7c/8 

group, I42d is a nonsymmorphic space group. This is incompatible with the structure 

shown in figure 5.9. The valid space group is I4. 

The positions of Te's are zinc-blende type, i.e. two inter-penetrating fcc lattices shifted 

one-fourth of the way along a body diagonal. The values of the lattice parameters a and 

c are taken from experiment to be 6.11 and 12.22 A respectively as reported by Hahn et 

al 1995 and Ozaki and Adachi 2001. 

In the next section, we shall investigate the electronic energy-band structure and opti- 

cal properties of crystalline ZnIn2Te4. The calculation will be done within the framework 

of the self-consistent LMTO and NMTO method. We shall also have a qualitative com- 

parison of these results with the available experimental results. 

5.4.1 Electronic structure calculations 

We first note that for the calculation of the optical properties of the solid we need to span 

a large energy range, from the occupied valence to the unoccupied conduction states. For 

Znln2Te4 this spans a range from -15 to 11 eV. This is shown in figure 5.10. For the 

usual TB-LMTO self-consistency cycles, we choose the nodal energy Eae, around which 

we expand wave function, just below the Fermi level. For example, for Znln2Te4 this 

energy is around -5 eV, i.e. in the valence band region. So the band structure based 
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on TB-LMTO method is quite accurate near the nodal energy. The higher region of the 

conduction band, which is away from the nodal energy is not accurately reproduced. Is it 

possible to shift some of the nodal energies to higher values and redo the calculations ? If 

the answer is yes, one may carry out multi-panel calculations in different energy windows. 

Although in this case, one may require careful downfolding (Andersen 1975) in order to 

avoid ghost bands. These difficulties are avoided in the recently developed order-N muffin- 

tin orbitals method (NMTO) (Andersen and Saha-Dasgupta 2000), which expands the 

wave function in term of a basis which is expressed as a Lagrange interpolation around a 

discrete set of nodal energies {On} : 

(I)jk(r) -~ LL'~-~-~C~ c~k [~n=O CnaL'(r)L('~L'(k)] " (5.23) 

The r(g) ~-"nRL,R'L' are Lagrange matrices which are such that  the energy dependent partial 

wave basis r  takes the values r at the nodal energies. Unlike the LMTO, 

the nodal energies are independent of the indices Lc~. By choosing the nodal energies 

across the energy range of interest we can accurately reproduce the bands in that  range. 

It requires a simple one-panel calculation. This was shown for GaAs in the range -15 to 

20 eV by Andersen and Saha-Dasgupta 2000. 

The right-hand panel in figure 5.10 shows the energy bands obtained from the NMTO 

using three nodal energies spread across the energy range of interest. In comparison 

with the left-hand panel in figure 5.10 showing the band structure calculated from the 

TB-LMTO, we note that  the largest change occurs in the conduction band, away from 

the TB-LMTO nodal energies bunched below -5 eV. We have used the von Barth-Hedin 

exchange (von Barth and Hedin 1972) with 512 k-points in the irreducible part of the 

Brillouin zone. 

The calculated density of states within TB-LMTO and NMTO are shown in the fig- 

ure 5.11. It is evident from these two figures that  there is significant difference between 

these two only in the conduction band. From the band structure comparison, this was also 

evident for the reasons discussed earlier. These densities agree quite well with the exper- 

imental XPS measurements of Ozaki and Adachi 2001 and also with their parametrized 

tight-binding calculations. These results are shown in the figure 5.12. It must be noted 

here that  since these calculations are based on the LDA, we do obtain a lower band-gap. 
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Figure 5.10: The band structure of ZnIn2Te4 calculated from the TB-LMTO (left) and 
the NMTO (right) with three nodal energies across the energy range. 

Figure 5.10 shows that, both in the TB-LMTO and the NMTO, a direct band-gap of 

around 1.33 eV (TB-LMTO) and 1.37 eV (NMTO) occurs at the F point. The absorp- 

tion coefficient measurements by Ozaki and Adachi 2001 also indicate a direct band-gap 

of around 1.4 eV. Different experimental measurements report values of the band-gap 

varying between 1.3 and 1.87 eV (Boltivets et al 1969, Manca et al 1974, Manca et al 

1993). Since the calculations are based on the LDA, we cannot have much confidence 

about the conduction bands. This problem can be tackled more accurately, for example, 

through by quasi-particle band structure within a GW type approximation (Aulbur 2000). 

These NMTO based calculations are a much better starting point of GW self-consistency 

iterations than the first or second generation LMTOs (see comments in Andersen and 

Saha-Dasgupta 2000). 

The TB-LMTO band structure gives us insight into the various structures in the 

density of states. At the lowest energies around -14 eV we have the states arising out of 

the Te s electrons. The sharp peak at -I0 eV is due to the very narrow Zn d bands. The 

next structures around -8 eV arise from the In s and Zn s electrons. The predominantly 
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Figure 5.11: Density of states for ZnIn2Te4 (left) calculated from the TB-LMTO and 
(right) calculated from NMTO. 

covalently bonded Te sp and In sp states gives rise to bonding and anti-bonding bands 

around -5 eV and 5 eV respectively. The band-gap lies between these bands. 

5.4.2 Optical properties 

In section 5.2, we have already described the methodological details of studying optical 

conductivity within the LMTO basis. However, in the previous subsection we mentioned 

that one may improve excited states calculations using NMTO. In this section, we shall 

investigate optical spectra of Znln2Te4 on the basis of both LMTO and NMTO method. 

We shall also try to have a comparison of these results with the available experimental 

data. 

We first note that our LDA-based calculations of dielectric functions figure 5.13 give 

a smaller band-gap than that of experiment. We may apply the scissors operator, which 

involves a rigid shift of the conduction band with respect to the valence band, so that 

the band-gap matches. This is frequently used by LDA practitioners, but cannot be fully 

justified. The correct procedure would be to carry out a full GW calculation (Aulbur 2000) 

which gives rise to an energy dependent self-energy. This shifts the bands unequally at 

different energies, resulting in a distortion of the shape of the densities of states as well. 
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Figure 5.12: (a) Theoretical density of states N(E) and (b) experimental XPS spectrum 
I(E) taken from Ref. Ozaki and Adachi 2001. 

Given this, the agreement of our theoretical calculations with the experimental results of 

Ozaki and Adachi 2001 available up to i0 eV photon energies, is not bad. In particular if 

we examine the NMTO calculations of the imaginary part of the dielectric function %(w) 

and compare it with the experimental observation (lower panel in figure 5.13), we note that 

most of the experimental structures : the shoulder at around 2 eV, the twin peaks between 

3 and 4 eV and the lower peak around 5 eV are reasonably well reproduced. The TB- 

LMTO calculation of c2(w) is shown at the top of figure 5.13. Although the structures are 

seen around the same photon energies, the relative weights are in much worse agreement 

with experiment. The origin of this disagreement is the worse representation of the 

conduction band, particularly near the upper edge of the gap. 

The unit cell of the defect-chalcopyrite structure indicates the asymmetry in the c- 

direction. There is no reason therefore that the optical response will be same when the 

polarization is along the a and c-axes. Since the experiment did not align the crystal 

axis with the polarization of the electric field, we have compared the results with the 

direction averaged response. For reference we have also shown in figure 5.14 the c2(w) 

with polarizations along the a and c axes. 
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Figure 5.13: (Top) imaginary part (averaged over all photon polarizations) of the dielectric 

function of ZnIn2Te4 from an LMTO calculation, (Right panel) real and imaginary parts 

of dielectric function based on NMTO calculation, and (Left panel) the experimental 
results of Ozaki and Adachi 2001. Photon energy is shown in the unit of eV. 
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Figure 5.14: The imaginary parts of the dielectric function with incident photon polar- 

izations perpendicular and parallel to the c-axis. Photon energy is shown in the unit of 

eV. 

We shall conclude with the remark on the two directions which we propose to take 

from here. The first point is to recognize that the NMTO calculations form a reasonable 

starting point of the more sophisticated many-body GW approaches. The second is related 

to the reason why we chose to study the defect-chalcopyrite in the first place. We would 

like to fill the voids in the structure with various "impurities" and study the signal for 

these in the optical response. These will be the aim of our subsequent work in this area. 

5.5 Conc l us i ons  

We have proposed here a modified expression for the optical conductivity as a convolution 

of an energy-frequency dependent transition matrix and the energy-resolved joint density 

of states. The main motivation was to generalize it to disordered systems, where the 

traditional reciprocal-space formulation breaks down due to the failure of Bloch's theorem. 

In order to gain confidence in our new formulation we have applied it here to the three 

alkaline-earth perovskite titanates in their paraelectric phases. The results within the 

LMTO calculations are in reasonable agreement with experimental data. To improve 
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the theoretical results in the their higher frequency region, we also performed NMTO 

based calculations on defect-chalcopyrite semiconductor Znln2Te4. These results show 

even better agreement with the experimental results. The band-gaps came out from both 

LMTO and NMTO calculations are close to the experimentally measured value. The 

agreement of theoretical results with experiment are as good as we can expect from a 

LDA calculation. This formulation can now form the starting point for a generalization 

to disordered systems, that is, combining with the ASR to random binary alloys. This 

we shall elaborately report in the next chapter. 



Chapter  6 

Optical properties of disordered alloys 

6.1 In troduct ion  

The object of our present study is to present a formulation for obtaining the configuration- 

averaged optical conductivity for random alloys. Because of randomness, there is a need 

to go beyond the usual reciprocal-space-based formulations for crystalline compounds. 

Instead of labelling the electronic states by the Bloch wave vector and band index (k, j), 

which is suitable for crystalline compounds, we have to label them by energy and the 

composite angular momentum L = (6, m, ms). In cases Where the disorder is substitutional 

and homogeneous, in the sense that the occupation probabilities of lattice sites by atom 

species are independent of the site label, we can still label the configuration-averaged 

quantities by the reciprocal wave vectors. However, the band picture breaks down, and 

we cannot use the band index labeling of quantum states as in crystalline materials. 

Substitutional disorder dictates that we begin with a purely real-space representation 

and we have chosen the minimal basis set of the TB-LMTO method (Andersen 1975). 

Configuration averaging over various random atomic arrangements has been carried out 

using the augmented space formalism (ASF) introduced by us earlier for the study of 

electronic properties of disordered systems (Mookerjee 1973, Kaplan and Gray 1977, 

Saha et al 1996, Dasgupta et al 1997, Ghosh et al 1999). The ASF goes beyond 

the usual mean-field approaches and takes into account configuration fluctuations. This 

formalism has been described in detail in the referenced articles and the interested reader 

~ contents of this chapter is being published in : (1) K K Saha and A Mookerjee, Phys. Rew. B 
70 134205 (2004) and (2) K K Saha and A Mookerjee, Phys. Rev. Lett. (2004) (submitted). 
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can go into the details in them. The contribution of this work will be to show that  the 

disorder-induced corrections to the averaged current terms in the optical conductivity 

are directly related either to the disorder-induced self-energy in the propagators or to 

vertex corrections. Since the self-energy and the vertex corrections can be calculated for 

realistic binary alloy systems, either within an augmented space recursion (Saha et al 

1996, Dasgupta et al 1997, Ghosh et al 1999) or within one of the mean-field approaches 

(Kaplan and Gray 1977), this formulation will form the basis of subsequent calculations 

in real alloys. 

6.2 The optical conductivity 

For the mathematical formulation we shall start with the equation (5.3) of the previous 

chapter. 

/2 S.~.(w) = Im dt e ~'- (~olj.(T) j~.(O)l~0), z=w+~O +. 

In case there is no anisotropy, an expression for the correlation function, at T = 0 K, 

can be obtained via the Kubo-Greenwood expression, 

S(w) = 3-~ ~ Tr Im{G~(E)} j~ I m { G ~ ( E + w ) } ] .  (6.1) 

We have assumed isotropy of the response so that the tensor Svv is diagonal and we 
1 have defined S(w) as the direction averaged quantity ~ ~ Svv(w). Jr is ~7 .j, and ~ is the 

direction of polarization of the incoming photon. The operators GV(E) and Gc(E) are 

the resolvents of the Hamiltonian projected onto the subspaces spanned by the occupied 

and the unoccupied one-electron states. 

The trace is invariant in different representations. For crystalline systems, usually the 

Bloch basis {Ik, j)} is used. For disordered systems, prior to configuration-averaging, it is 

more convenient to use the real-space based screened (or tight-binding) muffin-tin orbitals 

as a basis {IRL}}. 

If we define 

S,y(zl,z2)-= Tr [J r  GV(zl) J~ GO(z2)], (6.2) 
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then the above equation becomes 

,I l = i [ + 
-$~(E+,  E + + w ) - S ~ ( E - , E -  +w)],  (6.3) 

where 

I (E  • = lim f (E  • i5). 
6---*0 

We have used the Herglotz property of the Green operator, 

G ( E  + i5) = Gr(E) - i sgn(5) Gi(E). 

For disordered materials, we shall be interested in obtaining the configuration-averaged 

response functions. This will require the configuration averaging of quantities such as 

S (zl,z2). 

6.3 Configuration averaging 

Any description of a disordered system must be fronl a statistical point of view, since 

the properties of these systems are random variables and any particular configuration 

is of little interest i. Consequently, the study of configuration-averaged properties of 

disordered systems has received much attention. 

Configuration averaging for response functions in disordered materials has had some 

history. The Ziman-Faber theory (Ziman 1961, Bradley et al 1962, Faber and Ziman 

1965), much in use for liquids, is valid for electrons, weakly scattered from a dilute dis- 

tribution of impurities. The extended version of this theory was proposed by Evans et al 

1980, but this too overlooks multiple scattering effects, as pointed out by Roth and Singh 

1980. An effective medium approach (EMA) was proposed by Roth 1974 and developed 

further by Asano and Yonezawa 1980, Singh and Roth 1980, and Roth and Singh 1980. 

This approach does take into account multiple scattering effectively and, as we shall see, 

will have close similarities with the approach we propose in this chapter. Velick:~ 1969 

IThis statement has to be modified in some situations, like localized states in band tails, where unlikely 
configurations play an important role and configuration averaging is not meaningful. 
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has developed an expression for configuration-averaged response functions in random al- 

loys for simple tight-binding models with one orbital per site and diagonal disordered 

within the coherent-potential approximation (CPA). Brouers and Vedyayev 1972 have 

extended the formalism to transition-noble metal alloys. The CPA-like mean-field ap- 

proach has been applied to response functions by Niizeki and co-workers (Hoshino and 

Watabe 1977, Niizeki 1977a-c, Niizeki and Hoshino 1977), who extended the pioneering 

work of Velick:~ 1969 to longer-ranged random potentials. Mookerjee 1973 has introduced 

the ASF to tackle configuration averaging. Within this formalism, he studied the role 

of macroscopic conservation laws on the response functions, leading to a Ward identity 

between the vertex corrections and the self-energy (Mookerjee 1976). Within the CPA, 

vertex corrections were obtained by ingenious diagram summations by Leath 1970. There 

have been CPA calculations by Harris and Plischke 1972 and Nauciel-Bloch and Riedinger 

1974. In a series of papers, Mookerjee and co-workers (Mookerjee 1975, Mookerjee et al 

1985, Mookerjee and Thakur 1988) have applied the ASF to conductivity and optical 

conductivity in random alloys. This will form the background of our present development. 

The ASF has been described in chapter i. Within the ASF, the configuration-averaged 

Green function is given by (Ghosh et al 1999) : 

<< G(z) >> = (1] (zi  - HeS) -1 I1), (6.4) 

where 

R R' 

where 

X - AL 5LL, 

# 

V 

= A ( C L / A L ) / A ( 1 / A L )  5LL,, 

-- .BL 5nn, = B [(CL -- Z)/AL] / A  (1/AL) 5LL,, 

-- -FL 5LL, = F [ ( C L -  z ) / A L ] / A ( 1 / A L )  5LL,, 

-- V L L , ( R - - R ' )  = A ( 1 / A L ) - U 2  S L L , ( R - - R ' )  A ( 1 / A L , )  -1/2 (6.5) 

"PR = [R)(R] and TRR, = IR)(R'I are projection and transfer operators in real-space, and 

L is a composite angular momentum index {6, m, ms}. C, A are the TB-LMTO potential 
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parameters and S is the structure matrix, in the most tight-binding (c~) representation 

(Andersen 1975). The following functions are : 

and 

A(y) 
B(y) 
F(y) 

"= XA YAn t- XB YB, i.e., the average of y, 

= ( x ~  - xA)(yA -- y ~ ) ,  

= ~ ( y A - -  y ~ ) ,  

I1} I 1 } = A ( A L  1/2) I { 0 } ) + F ( A L  1/2) 1{R}), I 1 ) -  
II I1} I1 

We can reformulate the above in a second quantized formalism. This follows the ideas 

put forward by Schultz and Shapero 1973, which were extended in the ASF by Mookerjee 

1975. For the real-space part, this is straightforward, with a vacuum state described 

as that  one which contains no electron-like excitations, and the fermion creation and 

annihilation operators are  atRL and aRn for electrons at the site R with angular momentum 

indeces L. For the configuration-space part, we shall follow the ideas of reference Schultz 

and Shapero 1973 and consider the reference state to be the vacuum. Each spin [tip 2 

at any site from up to down is then a creation of a configuration fluctuation. Since each 

site can have only two configurations, two up to down spin nips cannot take place at a 

site. These excitations are then local and fermion-like. Each spin flip from down to up 

is a destruction of such a local pseudo-fermion. The Fock space is then spanned by all 

configuration states labelled by the cardinality sequences. The corresponding fermion- 

like creation and annihilation operators are b t and bR. These create and annihilate 

configuration fluctuations over the reference state. We should note that  the configuration 

fluctuations are local and quenched. In second quantized form, the Hamiltonian becomes 

H = H0 + H1, 

n0 = E a LaR  + E E 
' R L  R L  R t L  t 

H1 = E { ~ L  aRLaRLt b~bR + h a~LaRL (bR + btR)}, (6.6) 
R L  

where 

{bn, btn,} = 5RR,, 

2These spins denote configurations rather than electron spins. 
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{ b ~ , b ~ , }  = o = { b ~ , b ~ , } ,  

and the contraction 

where 

so that 

b(x') b(x)t = i o ( t ' - t )  ~ , ,  

b(x) = bR(t) = exp (itHo) bRexp (-i tHo) 

~(x,x')  = - i  ( {0}I{T b(x')bt(x)}l{0}> 

= - i O ( t ' -  t) 5RR,5(t-- t'). (6.7) 

This pseudo-fermion formalism has been described earlier by Mookerjee (Mookerjee 

1975). The readers are referred to that  article for further details. 

6.4 Averaged  Green funct ion in the  pseudo-fermion formalism 

In this section, we shall develop a multiple scattering formalism for the configuration- 

averaged Green function for a random binary alloy. The scattering is by configuration 

fluctuations and within the second-quantized formalism just described, the scattering di- 

agrams are Feynman diagrams. The formalism is very close to the Yonezawa-Matsubara 

scattering diagrams (Asano and Yonezawa 1980) and one can establish a one-to-one cor- 

respondence between them in the special case of diagonal disorder. 

The augmented space theorem then states that 

< < G ( x , x ' ) > > =  - i  ~ n! ... dtldt2...dtn 
n=0 

(01 {THI(tl) . . .  Hn(tn) a(x)a t(x t)} 10) 
(o1~1o> 

where it is understood that the boldface operators are expressed by the matrix represen- 

tation in {L} space and 

a(x) = = 

= U ( ~ , - ~ )  and I0/ = Io |  
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: d : b - , K e y  
X X 1 X 2 X 

X X 2 X 1 X '  

(a) 

X X 1 X 2 X 3 X '  

g(x,x')  

- - - ~ -  y(x,x') 

o F 

o B 

Figure 6.1: The scattering diagrams for (a) the two topologically identical diagrams for 

n = 2 and (b) one of the 3! topologically identical diagrams for n = 3. 

and 

U(t,t') = i- f~' dr" Hl(t") U(t",t'). 
O0 

We may now apply Wick's  theorem and Feynman 's  rules and generate a d iagrammat ic  

expansion for the  averaged Green function << G(x,  x I) >> in terms of the  VCA Green 

function, 

g (x ,x ' )  = - i  (01 {T a(x)at(x')} 10}. 

Let us examine a few terms in the series. 

(i) For n = 1, the  te rm in the  expansion is 

--i f dr1 (01 {THl(tl)a(x)at(x')} I O ) c o n n .  

The contribution of this term is zero, since all three terms arising out of HI [see equa- 

tion (6.6)] vanish because ({O)lbt(x)b(x)l{O}), ({0}lbt(x)l{0}), and ({0}lb(x)l{O}) 

are all zero. 

(ii) For n = 2, the only nonvanishing terms come from 
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s 

% 
l I % % 

# I % % 

% 

Figure 6.2: The topologically distinct scattering diagrams for n = 4. Top and middle are 

nonseparable, the bottom is separable. The middle diagram is a skeleton one. 

= " i ' . ,  i ' . ,  (Ol {Tat(x')a(x')at(x')a(x')a(x)at(x')} lO)~176 
• ({0}IT (bt(x,)+ b(x,)) (bt(x,)+ b(x2))I{0})co,n 

= F 2 [g(x, xl) g(z l ,x2)  g(x2, x') 7(x , ,z2)  + g(x, z2) g(x2,z , )  g(xl,  x') 7 (x , ,x , ) ]  . 

Figure 6.1 (a) shows a pictorial representation of the two terms, which are topolog- 

ically identical and therefore have identical contributions. This cancels the (I/2!) 

term in the expansion for << G(x, x ~) >>. The F vertex [see equation (6.6)] has a 

contribution FLL, which is diagonal in L space ELL' = FL 5LL', where 

(iii) Figure 6.1 (b) shows one of the topologically identical diagrams (there are 3! = 6 

such diagrams) for n = 3. Note that it involves the scattering vertex B. This arises 

from the first term in the expression for H1 in equation (6.6). Its contribution is 

also diagonal in L space BLL, = BL ~LL', where 

BL - ( x z  - XA) EL. 

This scattering vertex cannot sit either in the leftmost or in the rightmost positions, 

because one of the associated pseudo-fermion propagators vanishes. 
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Figure 6.3: Skeleton diagrams for order n -- 5. 

(iv) For n -- 4, there are two topologically distinct nonseparable diagrams 3 : the double 

tent and the crossed tent diagrams shown as the two top diagrams in figure 6.2. The 

inner tent in the top diagram goes on to renormalize the interior Green function from 

g(x, x ~) to ~ G(x, x t) >>. As such, the middle diagram is the only skeleton diagram 

at this order. There is one separable diagram (the bottom diagram in figure 6.2). 

This can be broken into two, as shown, by the dotted line. The rightmost diagram 

renormalizes the rightmost electron line. 

(v) The nonseparable topologically distinct diagrams for n = 5 are shown in figure 6.3. 

We note that all odd-order diagrams must have an odd number of B vertices. 

The skeleton diagrams provide the expression for the self-energy for the Dyson equation 

which follows : 

<< G(x,x')  • -- g(x,x') + / d y / d y '  g(x,y) ~(y,y ')  << G(y',x') >>. 

For homogeneous disorder, we have shown earlier that we have translational symmetry 

in the full augmented space (Ghosh et al 1999). We can then take the Fourier transform 

of the above equation to get 

G(k,E)  = g(k,E) + g(k,E) E(k ,E)  G(k,E).  (6.8) 

The diagrams for the self-energy are shown in figure 6.4. In the above equation, each 

term is a matrix in {L} space. 

3A nonseparable diagram cannot be broken into two along a electron line without also breaking a 
pseudo-fermion line. 
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" " ' ,  , ~ ~ s-" . - ~ - .  " ' - .  

C / :  I s  s = : " ~  C = v : $- = ~, : v 

Figure 6.4: The skeleton diagrams for the self-energy ]E(z). 

6.5 Averaged optical conductivity in the pseudo-fermion for- 
malism 

We now go back to equation (6.2) and discuss the configuration averaging of the two- 

particle Green functions of the kind 8~ (zl, z2). The augmented space theorem immediately 

implies that 

(6.9) 

The first thing to note about equation (6.9) is that the right-hand side is an average of 

four random functions whose fluctuations are correlated. The average of the product then 

involves the product of the averages and other contributions which come from averages 

taken in pairs, triplets, and all four random functions. 

6.5.1 Disorder-induced renormalizat ion of the current terms 

At this stage, in order to simplify notation, we shall omit the L index. However, we 

have to remember that  all terms labelled by indices R or k are matrices in {L} space, 

so the order of multiplication of various terms in the expression has to be preserved. We 

shall also omit the ~/index of the current term indicating the required projection onto a 

direction. If required, we can put them back in the final expression. 

The real-space representation of the random current operator, can take the values j'AARR,, 
�9 A B  " B A  " B B  JRR', 3RR', or JRR' with probabilities x~, XAXB, XBXA, and x 2, respectively. We may 
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Figure 6.5: The scattering vertices associated with the random current terms. 

r e w r i t e  j n n '  a S  

jnn, "AA "AB (1 - nn,) .BA (1 nR) nn, = JRn' nn nn, + JRR' nn + JRR' -- + JRR"BB (1 -- nn)(1 -- nR,). 

Following the same augmented space procedure as for the single-particle Green functions, 

we get 

"J = ~ ~ [ << j •RR' aTR an, + (XB -- XA ) J;(1)nn' at  an, (btRbn + bTR, bn,) 
R R '  

;(1) atn an, (bn + btR + btR, + bn,) 

+(XB -- XA) XV/-~j(~ ), a f a R  , { btnbn (btR, Wbn ,) + bTR, bn , (bTR +bR)} 

+ ( X B -  XA)2 J;(2)nn, a~ aR, b~,bn, btRbR+XAXBj(~ ), a~ an,{(b~ +bR) (btR , + bn,)} 1 

(6.10) 

where 

j(2) .AA .BB .AB .BA 
RR' = JRR'  -t- JRR' - -  JRR' -- JRR' 
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Figure 6.5 shows 15 different scattering vertices arising from terms in equation (6.10). 

The first in the figure is the averaged current. The rule for obtaining the diagrams for 

the correlation function S~(zl, z2) is as follows : Take any two current diagrams from 

figure 6.5 and two propagators and join them end to end. Now join the configuration 

fluctuation lines (shown as dashed arrows) in all possible ways. One such diagram is 

shown in figure 6.6. 

" . o  

6 

�9 " ~ s  s 

Figure 6.6: The construction of scattering diagrams for Sv(zi, z2). 

The dominant contribution comes from the diagram shown in figure 6.7. Here the two cur- 

rent terms are the averaged current, and all configuration-fluctuation decorations renor- 

malize only the two electron propagators. In this diagram the bold propagators are the 

fully renormalized electron propagators and the contribution of this term is 

JB d3k z 8~ 3 << j(k) >> << GV(k, zl) >> << j(k) >>t << GC(k, z2) >> (6.11) 

We now focus on the main correction terms to the expression in equation (6.11). 

These are the correction terms to the averaged current which are closely related to the 

self-energies. They arise from a set of diagrams in which no disorder propagator (shown 

as dashed lines) joins either two electron propagators or two of the current lines directly. 
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I 
f 

KEY 

< <  j > >  

< <  G > >  

Figure 6.7: The diagram for [<< j >> << G v >> ~ j >> ~ G c >>] 

These diagrams are made out of a left renormMized current diagram chosen out of the 

diagrams (1)-(4) in figure 6.8 and one right renormMized current diagram from (5)-(8) 

connected by two renormMized propagators, the bottom one being a valence and the top 

a conduction electron propagator. 

Let us now obtain expressions for the renormalized currents. A careful look at the self- 

energy diagrams (see the bottom of figure 6.8 and the example diagram shown there) 

shows that all self-energy diagrams have the structure 

2C(k,z) = F(z) r  F(z) 

where V(k, z) is the Fourier transform of CRR,(Z) = ~R1R2 GRRI(z) oRR' -I- RIR2(Z ) GR2R,(Z). 

While the contribution of the diagram labelled (1) in figure 6.8 is 

where 

j(1)(k) F(Zl) r  Zl) F(Zl)  

N 

FLL,(z) = ~ ~ ~L~, FL~, = ~ ~,~L, 

the expression for (6.12) becomes 

j(1)(k) F(Zl) F- l (z l )  ~(k, zl) = j(1)(k) f(zl) 2C(k, zl). 

The contributions of the other diagrams in the left column of figure 6.8 are 

2C(k, z2) F-I(z2) F(z2) j(1)(k) 

F(zl) j0)(k) F-I(zl) 2E(k,z~) 

2C(k, z2) F-l(z2) j0)(k) F(z2) 

= :E(k, z2) f(z2) j (1)(k),  

= j(1)(k) f (z l )  ~ ( k ,  Zl), 

= ~(k,  z2) f(z2) j(1)(k). 

(6.12) 
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(1) 

Renormallzed Currents 

(s) 

(2) (8) 

(3) (7) 

(4) 
(8) 

Self-energy 

O 3. > '~0 

F G P G F 

Figure 6.8: Relation between the renormalized currents and the self-energy. 

From the forms of F(z) and F(z), we note that" 

j(1)(k) F(z) F(z) ---- F(z) j0)(k) F(z) = JLL,(k)f L . ( 1 )  ,(Z). 

Similarly, the contributions of the diagrams in the right column in figure 6.8 are 

E(k, zl) f(zl) j(1)(k), j0)(k) f(z2) E(k, z2), 

E(k, zl) f(zl) j(1)(k), j(1)(k) f(z2) E(k, z2). 

Closely related to the above diagrams is a group of diagrams which describe joint fluctu- 

ations of one current and two propagators. Two such diagrams labelled (9) and (I0) in 

figure 6.9 can also be expressed in terms of the self-energy : 

E(k, z2) f(z2) j(2)(k) f(zl) E(k, zl), 

E(k, zl) f(zl) j(2)(k) f(z2) E(k, z2). 
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(9) (lo) 

Figure 6.9: Few more renormalized currents. 

If we now gather all the contributions from these diagrams, we may define a renormalized 

current term as follows : 

= <<j(k) >> +2 [E(k, z2) f(z2)j 0)t (k) + j0)t(k) f(zl) E(k, zl)] Jeff(k, Zl, z2) 

+ E(k, z2) f(z2) j(2)(k) f(z~) E(k, Zl). (6.13) 

The contribution of these disorder-renormalized currents and propagators to the cor- 

relation function is 

<< S(1)(Z1, Z2) >> ---- 

/BZ d3---k-k87r 3 Tr [Jeff(k, zl, z2) << GV(k, zl) >> Je'(k, zl, z2) t << GO(k, z2) >>]. (6.14) 

We now turn to terms which involve joint fluctuations between the two current terms and 

one propagator. We shall show that the corrections due to these terms are also related to 

the self-energy. Such diagrams are shown in figure 6.10. Contribution of these diagrams 

is given by 

<< 8(2)(z~, z2) >> B d3k [ = 4 - -  Tr j(1)(k) f(zl) E(k, zl) f(z~) j0)t(k) << G(k, z2) >> 
z 8~ -~ 

+ j(1)t(k) f(z2) E(k, z2) f(z2) j0)(k) << G(k, zl) >> ] (6.15) 

These terms have a slightly different structure than those shown in figure 6.7. However, 

they still depend only on the self-energy. 

Intuitively, we expect these to be the dominant disorder scattering correction to the 

averaged current. It is important to note that this correction can be obtained from the 

self-energy and is therefore eminently computationally feasible in the case of realistic 

alloys, once we have a feasible method for obtaining the self-energy. 
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Figure 6.10: The scattering diagrams associated with joint fluctuations of the random 

current terms and one propagator. 

6.5.2 Corrections to the current term related to the vertex corrections 

For the sake of completeness, we shall also indicate the contribution of those scattering 

diagrams to the current which cannot be directly related to the self-energy, but rather to 

vertex corrections. We expect these corrections to be less dominant. 

These diagrams are shown in the left column of figure 6.11. They are not related 

to the self-energies, but rather to specific vertex correction diagrams between the two 

propagators. There are three categories of diagrams : ones that involve F vertices [labelled 

(11)-(13)], ones that  involve 13 [labelled (14)-(16)] type vertices and those that involve 

both [labelled (17)-(18)]. 

The first category of diagrams (11)-(13) contributes the following : 

F(Z1) F-I(zl) j(2)(k) F(z2) F-l(z2) A(F)(o,k;zl, z2) 
F(Zl) F-I(zl)j(2)(k) F(z2) F-I(z2) A(F)(k, 0;zl,z2) 

F(Zl) F-I(zl)j(2)(k) F(z2) F-l(z2) A(f)(k,k;zl, z2) 

=~ diagram (11), 

=~ diagram (12), 

=~ diagram (13). 

Inserting the expressions for F(z) and F, we get a total contribution, 

J1 = f(zl) j(2)(k) f(z2){A(F)(O,k, zl,z2) + A(F)(k,O, Zl, Z2) + A(F)(k,k, z2, zl)} (6.16) 

Here, the vertex correction term A (F) involves only F-like vertices in all four legs. Simi- 
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Figure 6.11: Renormalized currents (left column) derived from vertex corrections (right 
column). 

larly, for the other two sets of diagrams we get 

B(Zl) B-I(zl) j(1)(k) F-I(z2) A(B)(k,k;Zl,Z2) 

F-I(zl) j(2)(k) ]3(z2) B-l(z2) A(B)(k,k;zl,z2) =v 

B(zl) B-I(zl) j(2)(k) ]3(z2) B-l(z2) A(B)(k,k;zl, z2) =v 

The total contribution will be 

J2 = ~ f(zl) j(1)(k) f(z2)+ f(zl) j(2)(k) f(z2) A(B)(k,k;zl,z2) 

A (B) involves only B-like vertices in its left-hand side legs. 
diagrams, 

B(Zl) B-I(zl)j(2)(k) F(z2) F-l(z2) A(FS)(k,k;zl, z2) 

F(zl) f-l(zl)j(2)(k) B(z2) S-l(z2) A(FB)(k,k;zl, z2) 

diagram (14), 

diagram (15), 

diagram (16). 

(6.17) 

Finally, for the last two 

=:> diagram (17), 

::~ diagram (18). 
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Figure 6.12: Some of the scattering diagrams associated with joint fluctuations of the 

random current terms and two propagators. 

Their contribution is 

J3 -- 

Collecting together terms 

2 f(zl) j(2)(k) f(z2) A(FB)(k,k;zl,z2) (6.18) 

A J  = J1 + J2 § J3 

The contribution of these disorder-renormalized currents and propagators to the cor- 

relation function is 

<< S(3)(zl, z2) >> = 

/sz d3k87~ 3 Tr [AJ(k,  Zl,Z2) << GV(k, zl) • AJ(k ,  zl,z2) t << GC(k, z2) >~,] (6.19) 

Finally, figure 6.12 shows the diagrams with joint fluctuations of two current terms and 

two propagators. These are also built out of vertex corrections. Note that  each of the six 

diagrams can be broken up into a left and right part. For the diagrams shown in figure 6.12 

all the right parts are the same. Thirty other similar diagrams can be produced by 

replacing the right part with the five different left parts mirror-imaged. The contribution 

of these diagrams is then, if 

K(k,  zl, z2) = f(z2)j(2)(k) f(zl)+b(z2) j(2)(k) f(z~)+f(z2) j(2)(k) b(zl)+b(z2)j(2)(k) b(Zl) 

where 
b(z) - XB--XA f(z), 
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B dak << $(a)(zl, z2) > ---- - -  Tr [K(k, Zl,Z2)| g*(k,  zl,z2) A(k,k ,  zl z2)] (6.20) 
Z 87r 3 ' " 

6.5.3 The vertex correction 

We shall now examine the scattering diagrams we have left out, namely those in which 

disorder lines connect both the propagators directly. These lead to vertex corrections 

due to electron-electron and electron-hole correlated propagation. We should note that 

since these corrections are related to the vertex corrections and we shall indicate how 

to obtain them within a ladder approximation, we need not sacrifice these terms in a 

calculation for a realistic alloy if we do not wish to do so. However, in most cases we 

expect their contribution to be relatively small. Figure 6.13 shows a few of these diagrams. 

In general, we obtain a Bethe-Salpeter equation for the averaged two-particle propagator. 

We shall consider only one special class of vertex diagrams in this work, namely the 

scattering diagrams which are built out of repeated vertices shown on the first line of 

figure 6.13. These are called the ladder diagrams and can be summed up to all orders. 

This is the disorder scattering version of the random-phase approximation (RPA) for 

electron-electron scattering. There is another form of diagrams shown on the second line 

of figure 6.13 with ladder insertions between the crossed vertices. These are known as 

maximally crossed diagrams. These diagrams lead to the localization effect. 

Here we shall sum the ladder diagrams to all orders. The contribution of the ladder 

diagram shown as the second diagram on the top line in figure 6.14 is 

E E E E E E  
R1R2 R3R4 R5 L1L2 L3L4 L5L6 

eft J sLo,RIL1 GR1L1,R2L (Zl) GR2L ,R3L3(Zl) 

• 

v/c 
where GnLR, L,(Z) = << GRLR, L,(Z) >> and 

Homogeneity in augmented space means that this is independent of R and it allows 
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Figure 6.13: The scattering diagrams leading to vertex corrections. 

us to take the Fourier transforms leading to 

Zl,] W 

We define 

d3k~ ] 
8~ 3 G ( k ' , z l )  jes t  (k',Zl, Z2) G(k',z2) 

= r(Zl,Z2) W F(z~,z2) 

BZ d3k ~ 3  G(k ,  z2) Jeff(k, zl,z2) G(k ,  Zl) = r ( z l , z 2 )  

d3k ~ 
/BZ 871-3 G ( k " z l )  "]eff(k" zl'z2)tG(k" z2) = r(zl,  z2). 

Let us now look at the contr ibut ion of the set of ladder diagrams. Each one of them 

has the  same structure as equation (6.21). We may then sum up the series as follows. 

Let us define 

/B d3k GL3L4(k'Zl) GL2LI(k'z2)' '~LLlaL2(zI'Z2) ~--" Z ST "3 

(6.21) 



Chapter 6. Optical properties of compounds and disordered alloys 118 

R4L 4 R3L3 R 5L6 R2L 5 R4L 4 R6L 8 

R,'I R2L2 RIL 1 R~2 R~3 R1,1 

Real Space Representation 

R L R L R L 
2 7  3 6  5 5 

I I 

R 2L2 R3L 3 R4L 4 

L 4 k L3 L 6k1L5k2 L4 

L 1 k L 2 L l k l L 2 k  2 L 3 

Reciprocal Space Representation 

LSk I L~ ~ ~ 

k I ' ' k3 

L k L k L k L 
1 1  2 2 3 3 4  

Figure 6.14: The ladder scattering diagrams for the vertex correction in real-space and 

reciprocal-space representations. 

~2LIL2 - -  w L 1  ~LIL2 ~LaL4 L3L4 - -  L3 

These supermatrices in {L} space are written as A and w_. The full ladder vertex may 

now be written as 

A(zl,z2) = ~_+~_ ~(Zl,Z~) ~=+~=5(Z l ,~ )  ~=~=(z~,z~) ~=+... 
= 

The ladder diagram vertex correction now can be written as 

~ Sladder(Zl, Z2) ~ = rL~(Zl, Z2) (zl,z2) " "L2L4 FL4 
L1L2 L3L4 

= Tr F(zl,z2) | F(z~,z2) A(z~,z2). 

(6.22) 

(6.23) 

6.5.4 Comments and remarks 

Starting from the pseudo-fermion picture in the augmented space method, we have ob- 

tained an expression for the configuration-averaged optical conductivity. The disorder 
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scattering renormalizes both the electron propagators as well as the current terms. We 

have shown that the dominant corrections to the averaged current can be related to the 

self-energy. For the sake of completeness, we have also shown that the remaining correc- 

tion terms are related to the vertex corrections. We have also indicated how to obtain the 

vertex corrections within the iadder approximation. Once we set up a computationally 

feasible technique for the computation of the self-energy and the ladder approximation 

to the vertex correction, all the correction terms can be easily obtained. Biswas et al 

1997 have suggested the augmented space recursion as a feasible technique for obtaining 

E(k) and have applied it for obtaining the complex band structure and density of states 

of a series of realistic metallic alloys, namely AgPd and AuFe and most recently NiPt 

(Saha et al 2004) among others. We propose to use that technique and the results de- 

rived here to obtain the configuration-averaged optical conductivity in disordered metallic 

alloys. We intend to study, through numerical calculations, the relative importance of the 

contribution of the different correction terms. 

6.6 Applications to CuAu (50-50) an d NiPt (50-50) alloys 

We shall now apply our methodology to study the optical properties of disordered CuAu 

and NiPt (50-50) alloys from a first principles approach. We have chosen these two alloy 

systems because of several reasons : for CuAu, the bunch of d-like states sits about 

1 eV below the Fermi level. For low photon energies, therefore, optical conductivity 

is dominated by the intraband transitions within s-p like states, which are extended 

and rather free electron-like. As a consequence, the optical conductivity for low photon 

energies below _ 1 eV should have a Drude like behaviour. For higher photon energies 

interband transitions between the occupied d-states and the higher unoccupied states 

begin to take over. In sharp contrast, the Fermi energy of NiPt almost straddles the d-like 

peak. For this alloy the Drude behaviour should be confined to a very narrow low photon 

energy range. This contrasting behaviour should be reflected in our results. Moreover, in 

both the two alloy systems there is a large size mismatch between the constituents. This 

indicates that the standard single site mean-field theories would be inadequate to capture 

the effect of this large size-mismatch. 
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Table 6. I: Lowest energy and Vegard's Law lattice constants for CuAu and NiPt. 

Alloy 
Lowest energy Vegard's Law 

lattice const lattice const 

(A) (A) 
CusoAuso 7.31 7.26 
NisoPtso 7.09 7.03 

Earlier theoretical work on optical conductivity for random alloys began with Velick:~ 

1969 based on the single site coherent potential approximation (CPA) in an empirical 

tight-binding model alloy. Butler 1985 extended the ideas and combined the CPA with 

the first-principles Korringa-Kohn-Rostocker (KKR) technique. Banhart 1999 used the 

KKR-CPA to study the optical conductivity of AgAu alloys. This alloy system has close 

resemblance to CuAu. Banhart found discrepancies of his theoretical results with experi- 

ment (Nielsson 1970, Rivory 1977) and argued that various factors could be responsible : 

use of the density functional and the single-site mean-field approximations in theory and 

effects of surfaces, their roughness, possible adsorbatcs and presence of large stresses in 

the samples, in the experiments. There have been a few more theoretical studies of optical 

properties of random alloys : Rhee et al 2000 on CoAl, Uba et al 2001 on CoPt and Rhee 

et al 2003 on Ni3Al. These works all base their approach on a large super-cell method to 

take care of the disorder. The method is brute force and less satisfactory than the CPA 

or ASR. 

We have begun our study with the self-consistent TB-LMTO-ASR calculations of the 

electronic structure of CuAu and NiPt (50-50) alloys. We have minimized the energy 

with respect to the variation in the average lattice constant for both the alloys. The 

table 6.1 shows the lowest energy lattice constants and compares them with the aver- 

aged or Vegard's law results. As expected, because of the large size difference between 

the constituents there is a "bowing" effect which is most prominent at the 50-50 alloys. 

The lowest energy lattice constant for both the alloys is greater than the Vegard's law 

predictions. 

Figure 6.15 shows the comparison between scaled the joint density of states (JDOS) 
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Figure 6.15: The configuration-averaged joint density of states and correlation function 

for CuAu (50-50) alloy shown as a function of the photon energy. 

and the averaged correlation function for a CuAu (50-50) alloy. From the figure it is clear 

that the transition rate is dependent both on the initial and the final energies, throughout 

the frequency range of interest. That is : 

where 

S(w) ~ ITI 2 J(w) 

J(w) = / dE / d3k ~ 3  Tr (GC(k,E) G V ( k , E + w ) )  

The figure 6.15 also shows that the disorder corrections to the current and the vertex 

correction are rather small and become negligible beyond photon energies of the order of 

22 eV. 

Figure 6.16 to the left shows the optical conductivity a(w) for CuAu (50-50) alloy. 

The inset shows the configuration-averaged density of states for the same alloy. The 

edge of the d-band complex is clearly seen to lie about 1 eV below the Fermi energy. 

The optical conductivity rapidly decreases as we increase the photon energy from zero 

upwards. This decrease continues until about 1 eV and then the conductivity rises again 

and has considerable structure as also shown in the correlation function for these photon 

energies (figure 6.15). 
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Figure 6.16: Averaged optical conductivity, ao(w) = S(~ and the density of states 

for a CuAu (50-50) alloy (left). The corrections to the optical conductivity have been 

considered as discussed in section 6.5. Same curve with the Drude fit at low photon 

energies (right). 

The right figure 6.16 shows the optical conductivity with a Drude fit [~D(w) : 

a(0)/(1 + (W~-)2), with a(0) ---- 0.II, T = 9.78] for the lower photon energies. The Drude 

fit is good for photon energies below 1 eV. From this information we may deduce that for 

low photon energies the conductivity arises due to intraband transition between the s-p 

states, which are free electron like and lead to a Drude type behaviour. Above 1 eV there 

is a onset of interband transition between the d and the conduction states and this leads 

to a sharp increase of optical conductivity and structure reflecting the structures in the 

d-like states. 

The interband contribution to the imaginary part of the dielectric function ~2 (w) may 

be obtained from the optical conductivity data, by subtracting away the Drude contribu- 

tion and dividing the result by w : E2(w) - ~  ( O ' ( W )  - -  o'D(w))/W. Below the onset of the 

interband transitions, this quantity vanishes. It then reaches a maximum at around 3 eV 

before decreasing. We have experimental data on AgAu (50-50) (Nielsson 1970), whose 

density of states closely resembles CuAu. The experimental data are in good qualitative 

agreement with figure 6.17. The general shape with a shoulder around 1 eV, a maximum 

and around 3 eV is clearly reproduced. 

The figure 6.18 shows the joint density of states and the averaged correlation function 

for the NiPt (50-50) alloy. The energy-frequency dependence of the effective transition 
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Figure 6.17: Interband contribution to the imaginary part of the dielectric function for 

CuAu (50-50) alloy. 
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Figure 6.18: The configuration-averaged joint density of states and correlation function 

for NiPt (50-50) alloy shown as a function of photon energy. 

rate is considerable more pronounced than for CuAu. Disorder correction to the current 

terms and vertex corrections are also more in the low photon energy region. They become 

negligible for high photon energies. 
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Figure 6.19: Averaged optical conductivity and the density of states for NiPt (50-50) 
alloy. 

Figure 6.19 shows the density of states and the averaged optical conductivity for NiPt. 

Although the density of states for NiPt qualitatively resembles that for CuAu, unlike the 

latter, the Fermi level sits right atop the high peak due to the d-like states. The interband 

transitions between the d-states and the conduction band is expected to start for very 

small photon energies, with a Drude contribution confined to a very narrow energy range 

near zero. The optical conductivity falls sharply in a very narrow energy range and 

recovers almost immediately. This is expected from the density of states picture. Since 

the Drude fit is in a very narrow range indeed we do not show it explicitly in the figure. 

In figure 6.20 we show the interband contribution to imaginary part of the dielectric 

function for NiPt (50-50) alloy. The interband contribution begins at a very low photon- 

energy as expected and attains a maximum around 1 eV. This is in contrast to the 

behaviour of CuAu, where Drude behaviour persists over a longer energy interval. We 

were unable to locate experimental data for this alloy system for comparison. 

6.7 C o n c l u s i o n  

A computationally feasible TB-LMTO-ASR based first principle theory has been pre- 

sented to study the configuration-averaged optical conductivity in random alloys. We 
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Figure 6.20: Interband contribution to the. imaginary part of the dielectric function for 

NiPt (50-50) alloy. 

have shown that the disorder scattering renormalizes the electron and hole propagators 

as well as the transition amplitudes. The corrections to the transition amplitude have 

been found to be related to the self-energy of the prop~tgators and the vertex corrections 

within the ladder approximation. The frequency dependent transport quantities of two 

disordered metallic alloys have been investigated applying our theory. We have found 

that the energy-frequency dependence to the effective transition rate is more pronounced 

for NiPt than that of CuAu. Same tendency was observed in disordered correction to 

the current terms and vertex corrections in the low photon energy region. We have also 

found that the conductivity occurs because of both intraband and interband transitions. 

So the imaginary part of the dielectric function calculated from the conductivity splits 

into intra and interband contributions. For CuAu the intraband transition takes place 

up to ~- 1 eV photon energy and in this region the conductivity curve follows Drude law 

of free electron model. For NiPt alloy the Drude behaviour is confined to a very narrow 

energy range, as the Fermi energy straddles the d-like peak in density of states. We have 

compared our results with available theoretical and experimental results and achieved a 

very impressive agreement with them. 
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A n  as se s sment  and future plans 

7.1 Concluding remarks 

In this chapter, we shall assess our work : that is, enumerate what was our initial plan 

of work, assess how much we have completed, indicate what were the limitations of our 

work and prescribe how to overcome these limitations, and finally lay out our future plan. 

Our aim was to systematically develop a theoretical scheme to study optical conduc- 

tivity of compounds and disordered alloys based on ~ecursion method. We have used 

TB-LMTO as well as the improved version of the LMTO method (namely NMTO basis) 

for the ordered calculations and then used ASR to generalize it to disordered systems. In 

the following, we would like to briefly describe the steps we.followed to reach to our goal : 

In chapter 2 we have shown that recursion calculations can be carried out much faster 

and for many more recursive steps exactly, if we perform the recursion on a subspace of the 

original augmented space reduced by using the symmetries of both the underlying lattice 

and random configurations on the lattice. This allowed us to obtain results for disordered 

binary alloys with enhanced accuracy required for first principles, self-consistent, density 

functional based calculations. 

In chapter 3 we have presented ASR formulation in reciprocal-space. In this formu- 

lation the real-space part was taken into account exactly and there was no truncation of 

this in the recursion. We found the results to be more accurate than recursion in real- 

space. We have also shown that the operation of the effective Hamiltonian is entirely in 

configuration space, which makes the computation easier and faster. However, we failed 

126 
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to carry out symmetry reduction in this reciprocal-space formulation because we were not 

confident about the way in which the phase factor e -~k'x (k is the symmetric k-point in 

the Brillouin zone and X is the real-space nearest neighbour vector) at different symmetric 

lattice positions changes with symmetry operations. We hope to think more about this 

in the near future. We have developed parallel codes (MPI programs) for computations 

in a Beowulf cluster machine. 

Since we require the off-diagonal elements of the Green function for our calculations 

of optical conductivity, we have generalized the recursion to block recursion and block 

tridiagonalized the Hamiltonian. The generalization has been described (both real and 

reciprocal-space representation) in detail in chapter 4. The termination procedure used 

by us is rather brute force. In the termination process we have repeatedly inverted a 9 x 9 

(for spd orbitals) matrix for 104 times, which may carry inaccuracies in the calculation. 

Using a better termination scheme will improve the accuracy of the calculation. This we 

may think over in nearest future. 

We know that the conductivity expression based on traditional reciprocal-space, that 

is, based on Bloch's theorem, does not work for disorder systems as they do not enjoy 

potential periodicity. So in chapter 5, we have obtained an alternative expression where 

the quantum states are directly labeled by energy and frequency, rather than by the 

'band' and 'crystal momentum' indices. We have proposed a modified expression for 

optical conductivity as a convolution of an energy-frequency dependent transition matrix 

and energy-resolved JDOS. In order to gain confidence in our new formulation we have 

applied it to the three alkaline-earth titanates, CaTiO3, SrTi03 and BaTi03 in their 

paraelectric phases. The results were in good agreement with available experimental 

data, although there were some discrepancies in the high frequency regions. To improve 

the results mostly in the high frequency regions, we worked within the improved version 

of the LMTO (namely NMTO basis) and obtained much better results for Znln2Te4. The 

formulation we obtained so far may be the starting point for a many-body GW formulation 

for random alloys. This we propose for future work. 

In chapter 6 we have presented a formulation, based on TB-LMTO-ASR, for the calcu- 

lation of the configuration-averaged optical conductivity in random alloys. The disorder 

scattering renormalizes the averaged current to an effective current term and the average 
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VCA propagator to a configuration-averaged propagator beyond the CPA approxima- 

tion. We have shown that the corrections to the transition amplitude are related to the 

self-energy of the propagators and vertex corrections. Finally, we have set up a computa- 

tionally feasible program and applied to CuAu and NiPt (50-50) alloys. We have shown 

that the conductivity occurs because of both intraband and interband transitions. The 

optical conductivity of CuAu for low photon energies below - 1 eV have a Drude like 

behaviour and this is found to be confined to a very narrow energy range in NiPt alloy. 

For higher photon energies interband transitions between the occupied d states and the 

higher unoccupied states begin to take over. 

7.2 Future  direct ions  

The formulation we described so far s tar ted from the  Kubo-Greenwood expression, which 

has two Green functions : one for valence and other for conduction bands [See equat ion 

(6.9)]. The  block recursion has been used to calculate Green matr ix  elements via ter- 

minat ion  of continued fractions, which may carry error in the  calculations. Moreover, 

the  te rminat ion  scheme we used in block recursion was not very accurate one. Now the  

question is how to minimize the  approximation in the calculation. Is it possible to have 

a formulation in such a way which will involve ordinary recursion to be done only once 

instead of Block recursion for two Green matrices ? This can be done if we start our 

formulat ion from Kubo formula instead of Kubo-Greenwood formula. A brief description 

of the  formulation is given in the following : 

Our aim is to s tudy correlation function : 

Sn(k,t) = (kLIA(t)A*(O)lkL) 

where (kLIA(t) = (tP(t)l is governed b y :  

- i O  (~(t)l = (tg(t)l H 

The recursion me thod  involves the following steps : 

�9 Expand the  wave func t ion :  <tg(t)l = End__0 D*(t) (fnl 
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�9 Choosing initial condition ( f - l l  --~ 0 and (f01 = (kLIA,  we generate the orthogonal 

basis {[fn}} through recursion : 

(fn+ll = (fnl H - an (fnl - b2n ( fn- l l ,  n = 0 , 1 , 2 , . . .  

( fnlHIfn} 2 = (fnlfn} 
where a n -  (fnlfn} bn (fn--i I fn--1} 

�9 D~)(t) = (q2(t)lfo } = (kLIA( t )A*(O)IkL } = SL(k , t )  

It will turn out that  the sequence {an, b 2} is sufficient for the reconstruction of the dy- 

namical quantities of interest. If we now substitute the orthogonal expansion into the 

SchrSdinger equation (7.1), the differential operator acts on Dn(t  ) and the Hamiltonian 

acts on the bras (fnl. The result is a set of coupled linear differential equations : 

,OD*(t) 

Ot 
2 D~+l(t ) = D*_l(t)  + an D*(t) + bn+ 1 

with D * l ( t ) = 0 ,  D*(0)=Sn,0 

Using Laplace t ransform: dn(z ) = f ~  dt e -i*t D*(t),,, 

2 ( z - a n ) d * ( z )  +iSn,O = d*_l(z)q-bn+ 1 d n + l ( Z  ) ,  n=0,1,2 . . .  

which leads : 

d~(z) = 

The Correlation function �9 

- i  

z - ao - 
Z - -  a l  

z - -  a 2 . .  �9 

s(.) ---- TrL/Bz dak8rr a f ~  dt e-i~t SL(k't) 

= 2 TrL ljm [ dak {Re[d~L(k,w-i5)1 
z 8~r a o---+o a B  

Imaginary part of the generalized susceptibility : 

X"(w) = ( 1 - e - f ~ h ~  
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For optical conductivity we choose the operator A(t) to be the current operator j ' ( t )  and 

the carry out the recursion using the initial state : 

j~(0)lkL ) = q ~ e  ik'(r-R) v~lCL(r -- R)) 
R 

_-- E eik'(r-R)EV~L, I C L , ( r - - R ) )  

R L ~ 

= E Vf~L'I kn'} 
L I 

the matrix element V~L, = WLL, G~L, will be calculated using the method given by Hobbs 

et al 1995. 

For disorder calculations �9 

H ) H 

J" , 7" 

and initial state will be, j~(0)[ kL | {T1T2...}} 

7.2.1 Remarks 

�9 In this method one can directly study correlation function. 

�9 This method is more accurate as the recursion is being done only once. 

�9 Studying of optical conductivity always requires a perfect picture of the band struc- 

ture of solid. But most of the first principle theories fail to give an accurate infor- 

mation about the excited states which can be further improved using many-body 

GW approximation. This formulation will now form the starting point for a GW 

formulation. 

A Ph.D. programme is always time bound and a person's thirst for knowledge may 

not find its fulfillment in this limited span of time. But this endeavor elevates his thirst 

to a higher realm. I do not know how much of knowledge on disorder physics I have been 

able to pick up. But I sincerely believe that my achievement as well as any limitation of 

my work will encourage me to go on working and look for a new goal of satisfaction. 
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